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ABSTRACT 

The sens i t iv i ty  of the response of a dynamic system t o  changes 

i n  i ts  parameters is  of great importance i n  the design of systems. 

Several methods of sens i t iv i ty  analysis are reviewed: 

Sensi t ivi ty  Operators, Eigenvalue Sensit ivity.  These methods are shown 

t o  have various merits as tools  of analysis, but cannot be used for the 

systematic design of a low sens i t iv i ty  system. 

Direct Simulation, 

I n  order t o  develop a systematic design procedure, sens i t iv i ty  

coefficients are introduced. These coefficients are i n  general the 

elements of a matrix and axe given by the derivative of the system t r a -  

jectory with respect t o  the parameters of in te res t .  The sens i t iv i ty  

equations which describe these coefficients are derived and the 

sens i t iv i ty  design problem i s  defined f o r  a constant gain, l inear  feed- 

back system. 

The method of Analog Sensi t ivi ty  Design (ASD) is  developed t o  

solve the sens i t iv i ty  design problem. This method employs the simul- 

taneous solution of the state and sens i t iv i ty  equations of the dynamic 

system on a repet i t ive operation analog computer and an automated h i l l  

climbing i te ra t ive  solution technique. A s t ruc tura l  method i s  described 

where ASD can be used when the response of an exis t ing physical device 

with an unknown mathematical description i s  t o  be desensitized t o  one 

or  more of i t s  parameters. 

are discussed and a simple second order example is  solved. 

Some of the other unique advantages of ASD 

A case study involving the design of a feedback control system f o r  

The control system i s  t o  be insen- the Saturn V - Apollo is  presented. 

s i t i ve  t o  changes i n  the natural  frequencies of the bending modes of 

V 



the vehicle. The equations of motion are derived, a br ief  discussion 

of wind disturbances acting on the vehicle i s  given and a design wind 

selected. ASD is  then applied t o  a seventh order fixed t i m e  model of 

the booster with a single bending mode included. The result ing de- 

sensit ized system is compared with an optimal system fo r  nominal and 

off nominal values of bending mode frequency. 

maintains adequate control of the vehicle fo r  bending frequency per- 

turbations which are suff ic ient  t o  drive the optimal system unstable. 

The same two control systems are then applied t o  a full time varying 

eleventh order booster model including three bending modes and a 

design wind disturbance. 

shown t o  be far more tolerant  t o  changes i n  bending mode frequencies 

than is the optimal system. 

The desensitized system 

Again the desensitized control system i s  

v i  



1. 

C-R I 

INTRODUCTION 

1.1 General 

In  recent years many powerful new mathematical techniques have been 

In  addition developed fo r  the analysis and design of dynamic processes. 

t o  these new techniques, c lass ica l  techniques have been refined and 

improved f o r  application t o  large and sophisticated systems. 

of these techniques can be applied, however, a mathematical description 

o r  model of the process must be obtained. Th i s  model usually consists 

of one o r  a se t  of d i f f e ren t i a l  equations, i n  general nonlinear and time 

4 varying. Using standard techniques these equations can be reduced t o  

a set of f i rs t  order d i f f e ren t i a l  equations as i n  (1.1-1). 

Before any 

F(X, 2, m, q, t )  = o (1 .l-1) 

where x is an n-vector, the dependent variable 

is  the derivative of x w i t h  respect t o  t 

m i s  an m-vector, the forcing function or control 

q i s  an r-vector, a parameter of the system 

t i s  the independent variable, taken as time 

The appropriate design and analysis techniques can then be applied 

t o  (1.1-1) with the resu l t s  assumed t o  apply t o  the or iginal  physical 

system. The question t o  be examined here is  the success of t h i s  appli- 

cat ion. 

No matter how carefully the mathematical model (1.1-1) has been 

formulated, there always exist differences between the model and the 

physical dynamic process that it has been de$igned t o  represent. For 
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t h i s  reason the solutions t o  the system of d i f f e ren t i a l  equations (1.1-1) 

cannot be said t o  represent the t rue behavior of the physical system. 

There can be many sources of t h i s  difference. F i r s t  it may be impossible 

or  simply impractical t o  real ize  mathematically e i the r  the functions o r  

the parameter values of the dynamic process, even assuming they are 

known exactly. Second, i n  v i r tua l ly  a l l  pract ical  problems the values 

of the parameter q i s  not known exactly; a l l  physical components have 

non-zero tolerances. Furthermore the equations (1 .l-1) are generally 

solved on e i ther  a d i g i t a l  or  an analog computer. 

e i ther  of these extremely useful machines leads t o  f i n i t e  errors  i n  

the implementation of the solution of (1.1-1) even i n  the unlikely 

event t ha t  it did represent the physical dynamic process exactly. 

A s  i s  well known, 

For these reasons it is  important t o  develop a method of control 

system design tha t  w i l l  insure that the response of the physical system 

w i l l  be "close" t o  the response of the mathematical model i n  spi te  of 

the s m a l l  but f i n i t e  differences i n  the value of p a r m t e r s  between 

the two. If such a design technique is possible, then full advantage 

can be taken of the powerful mathematical tools  of system analysis and 

design available today. The properties of the dynamic system could 

then be successfully predicted and i ts  behavior evaluated w i t h  con- 

fidence before actual  device construction i s  begun. The method of 

Analog Sensi t ivi ty  Design, the subject of t h i s  paper, makes t h i s  possible. 

1.2 Historical  Review 

The mast common method used i n  c lass ica l  design t o  decrease the 

sens i t iv i ty  of a control system t o  changes i n  parameter values is the 



addition of negative feedback or  i n  cases where feedback i s  already 

present, increasing i ts  magnitude. 

the foundation f o r  modern control theory introduced the concept of 

parameter sensi t ivi ty .  With few exceptions, however, the concept of 

sens i t iv i ty  remained dormant u n t i l  comparatively recently. 

The use of feedback loops t o  reduce the sens i t iv i ty  of plant 

H. W. Bode,’ i n  h is  book which l a i d  

output t o  variations i n  the plant t ransfer  function w a s  suggested by 

Horowitz 

without paying the penalty of t h e i r  complexity. 

9 as a method of obtaining the advantages of adaptive systems 

The major emphasis i n  these ear ly  studies was  on the transform 

approach t o  the study of s e n ~ i t i v i t y . ” ~ ~ - ’ ~ ~ ’ * ~  

measure was taken as the t ransfer  function relat ing the wrcentage 

change of the system transfer  function t o  the percentage change of the 

pwameter of in te res t .  The pole-zero and root-locus sens i t iv i ty  

problem was a lso  examined by several authors, among them Kuol3 and 

Huang.” The major d i f f i cu l t i e s  with a l l  of these frequency domain 

techniques were t h e i r  inapplicabili ty t o  time varying o r  nonlinear 

systems and the d i f f i cu l ty  of drawing meaningful conclusions about the 

time response sens i t iv i ty  of the systems. 

The sens i t iv i ty  

The study of t i m e  response or  t ra jectory sens i t iv i ty  of dynamic 

systems w a s  begun i n  earnest i n  the f i e l d  of d i f fe ren t ia l  analyzers 

where accuracy has always been of great importance. Miller and 

particularly,  formulated the time domain sens i t iv i ty  problem 

i n  a meaningful way and derived the or iginal  d i f f e ren t i a l  equations 

describing the sens i t iv i ty  coefficients of a system. 



4. 

Recently do rat^,^ Rohrer and Sobral,18 and Pagurek15 have used the 

concept of sens i t iv i ty  f o r  the study of optimal control of processes 

with pa r t i a l ly  unknown parameters. Their primary concern w a s  t o  make 

the value of the optimal index of perfomnance insensitive t o  variations 

i n  the system parameters. Again there w a s  l i t t l e  emphasis placed on 

the sens i t iv i ty  of the t i m e  response or the development of useful 

design techniques. Holtzman and Horing have used sens i t iv i ty  analysis 8 

t o  examine the e f fec t  of parameter variations on the solution t o  the 

fixed terminal point optimal control problem. 

Pagurek15 has shown that under cer ta in  conditions the open loop 

and closed loop sens i t i v i t i e s  of a given l inear  system are identical .  

Th i s  r e su l t  i s  s t r i c t l y  t rue only f o r  infinitesimal parameter vari-  

ations, however, and does not hold t rue i n  general. 

Cruz and Perkins 3’16 have recently attacked the problem of plant 

They show that sens i t iv i ty  through the use of sens i t iv i ty  operators. 

f o r  an open loop and a closed loop plant having ident ical  responses 

when parameters axe at their nominal values, the closed loop plant i s  

l e s s  sensit ive t o  par t icular  parameter variations than is the open 

loop plant i f  a particular operator, which is  a function of the para- 

meter variation, is  a contraction operator. This technique appears 

d i f f i c u l t  t o  apply t o  a general system arid does not seem t o  offer  any 

promise of leading t o  a usable procedure. 

The problem of synthesizing insensitive systems i s  a d i f f i c u l t  

19920 one and not many new results have been obtained i n  t h i s  area. 

and Kokotovic have indicated several time domain techniques that 

Tomovic 



appear promising. The major emphasis of their work, however, has been 

i n  the analysis of the parameter sens i t iv i ty  of exis t ing systems. 

Kokotovic sll method of sens i t iv i ty  point analysis makes possible the 

simultaneous evaluation of all of the sens i t iv i ty  coefficients of a 

dynamic process. 

Tue122 developed a synthesis procedure which is val id  f o r  both 

l inear  and nonlinear plants. H i s  method resu l t s  i n  an open loop con- 

t r o l l e r  which limits t ra jectory dispersion due t o  uncertainit ies i n  

plant paraneter values. The standard state variables are augmented 

with sens i t iv i ty  variables representing the sens i t iv i ty  coefficients 

of the open loop system. Standard control signal optimization tech- 

niquesZ’l7 were used t o  solve the result ing optimal control problem. 

The major disadvantage of t h i s  method i s  the open loop structure of 

the controller and the consequent l o s s  of nominal response acceptabili ty.  

6 Dougherty attacked the synthesis problem i n  a s i m i l a r  fashion 

except f o r  the use of closed loop sens i t iv i ty  coefficients.  The use 

of closed loop coefficients required the specification - a p r i o r i  of the 

structure of the controller.  Once t h i s  was done, the closed loop 

sens i t iv i ty  coefficients and t h e i r  describing d i f fe ren t ia l  equations 

could be adjoined t o  the s t a t e  equations t o  form an augmented optimal 

control problem. The index of performance was made a function of both 

the states and the sens i t iv i ty  coefficients such that the system re- 

sponse was optimized while simultaneously minimizing a measure of the 

sensi t ivi ty .  The parameters over which the optimization took place 
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were the gains i n  the feedback controller.  The problem w a s  solved 

using the techniques of parameter optimization. The chief d i f f i cu l ty  

of t h i s  technique is  the necessity of solving the two point boundary 

value problem that results from the parameter optimization and the very 

slow convergence of the gradient technique used. 



CHAPTER 2 

ANALYSIS OF SYSTEM SENSITIVITY 

2.1 General 

I n  th i s  chapter several techniques of sens i t iv i ty  analysis w i l l  be 

examined and the possibi l i ty  of t h e i r  providing a useful Eethod of 

synthesis discussed. The object i s  t o  examine a dynamic system for the 

e f fec ts  of inadequate knowledge of parameter values. The nominal value 

of the parameters can be assumed known, but t h e i r  actual  values are 

unknown and unmeasureable . 
Consider for example the t ra jectory of a particular dynamic process 

i n  s t a t e  space. The i n i t i a l  and terminal points are fixed a t  X and 

% as shown i n  Figure 2-1. The sol id  l i ne  indicates the t ra jectory the 

process w i l l  t rave l  between Xo and ;x;T when a l l  parameters take on t h e i r  

0 

, nominal values. When the parameters are perturbed the t ra jec tor ies  

exhibit  dispersion about the nominal path. The locus of t ra jec tor ies  

caused by "small" perturbations i n  the plant parameters form some sor t  

of tube i n  s t a t e  space. Sensi t ivi ty  analysis attempts t o  place bounds 

on the diameter of the tube once bounds on the parameter variations are 

given. The smaller the diameter of the tube of t ra jector ies ,  the l e s s  

sensitive t o  parameter variations i s  the dynamic process. 

2.2 Direct Simulation 

The sens i t iv i ty  of dynamic systems can be studied using e i the r  

d i g i t a l  or analog computers. 

used method is  by d i rec t  simulation. 

The most s t ra ight  forward and commonly 

The d i f fe ren t ia l  equations of the 

system (1.1-1) are solved automatically for a range of parameter values 
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FIG. 2-1 DISPERSION 



+ A i = 1, 2, . . . ,N where q = q i s  the nominal value of the 
90 0 

(2.2-1) 

These parameter values are selected to cover the en t i re  expected range of 

perturbations. I f  the solutions of (2.2-1) are a l l  "close" in  some 

respect, are a l l  acceptable i n  terms of the purpose of the system and 

do not exceed component s t ruc tura l  limits, then the system described by 

(2.2-1) i s  said to be insensitive to variations i n  the parameter q. If, 

however, the solutions are not close i n  the sense of Figure 2-1 o r  i f  

some of the solutions are unstable, then the system as it stands i s  

obviously unacceptable. The question then arises as t o  how the system 

can be made l e s s  sensit ive.  This simple method of sens i t iv i ty  analysis 

cannot answer tha t  question. In  sp i te  of t h i s  drawback, however, the 

ease with which the equations (2.2-1) can be solved by direct  inte- 

gration makes t h i s  technique a good f i r s t  s tep i n  the analysis of the 

sens i t iv i ty  of the mathematical model of dynamic processes. Often the 

system (2.2-1) i s  found to be suf'ficiently insensitive to the expected 

parameter variations and analysis need proceed no further.  

3717 2.3 Sensi t ivi ty  Operators 

Traditionally the problem of decreasing the sens i t iv i ty  of the 

response of a dynamic system to parameter perturbations within the 

system i s  solved by adding additional negative feedback around the 
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possibi l i ty  of developing a design technique u t i l i z ing  t h i s  procedure. 

This section examines the e f fec t  of doing t h i s  and the 

In  order t o  examine the e f fec t  of additional feedback on parameter 

t ra jectory sens i t iv i ty  the two systems of Figure 2-2 and Figure 2-3 

w i l l  be studied. 

The controllers C and C are  so constructed tha t  for  nominal para- 
0 

meter values P = P(g t )  the response of the two systems t o  iden- 

t i c a l  inputs is identical .  

varying plant operator dependent on the parameter 

0’ 

P(g, t )  can be regarded as a l inear,  time 

q. 

The output of the open loop plant f o r  nominal parameter values, 

when forced by the input r( t)  is  given by 

x,(t) = p(qo> t )  uo( t )  

x,(t) = P(go.’ t )  C o ( t >  r ( t> 

o r  

(2.3-1) 

Similarly, the output of the closed loop plant under the same conditions 

of nominal parameter values and forced by the input r( t ) is  given by 

or, solving f o r  xc( t ) 

where  I is the ident i ty  operator and the superscript -1 indicates the 

inverse operator. 

L e t  P(q, t )  = P(qo + A q, t)  be the plant operator f o r  the 

Then the output of the perturbed parameter values 

plant w i l l  a l so  be perturbed from i ts  nominal value. 

turbation be e o ( t )  and e,(t) 

g = 90 + A q. 

Let t h i s  per- 

f o r  the open loop and closed loop 
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FIG. 2 - 2  OPEN LOOP 

FIG. 2-3 CLOSED LOOP 
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respectively. Then these perturbations are given by 

eo(q, t )  = xo(q0> t )  - xo(qo + A CL t )  

The closed loop perturbation can be writ ten as 

(2.3-4) 

where the time variable has been suppressed f o r  brevity. 

Define the operators 

A P  = P(qo + h  9) - P(qo> 

(2.3-5 1 

then the closed loop t ra jectory dispersion is given by 

Recall t ha t  f o r  nominal parameter values q = go the open loop and 

closed loop systems give ident ical  outputs f o r  ident ical  inputs. 

Therefore 

x0(qo) = xc(qo) 

and 

(2.3-7) 

Using the f ac t  that 

x C = [I + FCH] FC r(t) (2.3-8) 



gives the re la t ion  

which when combined with the def ini t ions (2.3-5) gives the following 

expression fo r  the open loop plant input function 

uo(qo) = c [I - m(q0jl r(t) (2.3-10) 

From the diagram of the open loop system, Figure 2-2, it i s  evident that 

eo(qo> = [P(qo) - P(qo +Ad] uo( t>  (2  3-11) 

Using (2.3-11) with (2.3-10) and (2.3-5) gives an expression fo r  the 

open loop t ra jectory dispersion 

Finally, combining the expressions f o r  closed loop t ra jectory dis- 

persion (2.3-6) and open loop t ra jectory dispersion (2.3-12) gives the 

following re la t ion  

e C = 11 + P(go + 49, t )  C H I  e 0 (2-3-13) 

Thus the perturbations of the closed loop system due t o  a paramter  

variation are related by a time varying l inear  operator (2.3-14) t o  

those of the open loop system. 

What does t h i s  indicate about the re la t ive  sens i t iv i ty  of the two 

systems t o  parameter variations? 

is taken as a masure of the sensi t ivi ty ,  then from (2.3-13) 

If the norm of the output dispersion 



Thus if If L(qo + A q)11 < 1 then the closed loop t ra jectory 

dispersion is  less than the open loop t ra jectory d i s p r s i o n  and the 

closed loop system is  said t o  be Less sensitive than the open loop system 

f o r  that par t icular  parameter variation (bq. Unfortunately th i s  gives 

no information about the re la t ive  sens i t i v i t i e s  fo r  any other parameter 

variation. 

the closed loop system (2.3-14) would have t o  be evalu.ated f o r  many 

values of 4 q j u s t  as w a s  (2.2-1). Thus the method of sens i t iv i ty  

operators appears t o  have no pract ical  advantage over sens i t iv i ty  analysis 

by d i rec t  simulation. 

evaluate than i s  (2.2-1). 

i n  a systematic fashion i f  a par t icular  closed loop design proves t o  be 

more sensit ive than the or iginal  open loop design. Thus while the 

technique may prove t o  be useful theoretically,  there is  some doubt as 

t o  i t s  pract ical  u t i l i t y .  

To get a complete picture of the parameter sens i t iv i ty  of 

In  general, (2.3-14) i s  much more d i f f i c u l t  t o  

Additionally, there i s  again no way t o  proceed 

2.4 Eigenvalue Sensi t ivi ty  

A very useful technique f o r  studying the properties of l inear,  t i m e  

varying systems involves the plot t ing of the poles and zeros of the 

system transfer  f’unction. It is  w e l l  known that the poles o r  eigenvalues 

of t h i s  t ransfer  function completely determine the s t a b i l i t y  and shape of 

the system transient  response. Thus it is  natural  t o  examine the 

sens i t iv i ty  of the eigenvalues t o  changes i n  the parameters of the system. 

In  w h a t  follows the parameter q w i l l  be assumed t o  be a scalar  i n  order 

t o  simplify the notation. 

4 



Assume the l inear ,  time invariant dynamic system is  described by 

the homogeneous, constant coefficient d i f f e ren t i a l  equation (2.4-1). 

z(t)  = A ( q )  x 

x(0) = c 
(2  -4-1) 

where x i s  the n dimensional state vector 

2 i s  the time derivative of x 

A ( q )  i s  the n x n system matrix dependent on q 

q i s  the scalar  parameter of in te res t  with nominal 

value qo 

The eigenvalues hi and the corresponding eigenvector vi fo r  the 

nominal value of the parameter q are  defined by 

'(qo) vi(qo) = hi(qo> vi(qo) i = 1, 2, ..., n (2  -4-2) 

The perturbed system, with q = qo + &q has eigenvalues and 

eigenvectors given by 

A(qo + A d  vi(qo + A d  = Xi(q0 + A d  vi(% + A SI (2.4-3) 

i = 1,2, .  . .,n 

(2  -4-4) 

- hi(qo + 6 s )  vi(qo + - hi(q0) vi(qO> = 0 

Equation (2.4-4) can be expanded i n  a Taylor Series about the nominal 
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2 
where O(q-qo)2 indicates an e r ro r  term of the order (q-$) . 

For suff ic ient ly  small  1 q-qoi the l inear  terms of (2.4-5) w i l l  

dominate and the equation becomes 

i = 1,2, ..., n 

Taking the indicated p a r t i a l  derivatives yields 

i = 1,2, .  . .,n (2.4-6) 

Next l e t  ui be the ith eigenvector of AT. Recall tha t  AT has 

ident ical  eigenvalues with A but the eigenvectors are different .  The 

u are then given by i 

i = 1, 2, ..., n T A ui = h. ui 
1 

(2.4-7) 

Transposing (2.4-6) and postmultiplying by ui gives 

(2.4-8) 

where all terms are t o  be evaluated at q = $. Equation (2.4-7) is  

next combined with (2.4-8) and the f ac t  that h: = hi used t o  obtain 

Equation (2.4-9) expresses the eigenvalue sens i t iv i ty  of the system 

(2.4-1) with a l l  terms evaluated at the nominal value of the parameter. 



This is  an e f f i c i en t  method of investigating sens i t iv i ty  since unlike 

the previous methods only one evaluation is  needed w i t h  the resu l t s  

holding f o r  all s m a l l  parameter variations 

t o  be highly sensit ive w i t h  respect t o  a particular eigenvalue it i s  

g. If a system is found 

not c lear  how the system should be redesigned t o  reduce t h i s  sens i t iv i ty  

without increasing the sens i t iv i ty  of the other eigenvalues t o  

unacceptable levels .  

t oo l  fo r  the comparison of the relat ive eigenvalue sens i t iv i ty  of com- 

peting systems t o  small parameter variations, it does not provide a 

systematic procedure f o r  the systhesis of an insensitive system. 

Thus while (2.4-9) provides a rapid and simple 
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CHAPTER 3 

$ENSITIVITY DESIGN 

3.1 General 

The previous chapter examined several methods of analyzing the 

sens i t iv i ty  of dynamic systems t o  parameter variations but none of the 

methods showed any promise of being extendable t o  a tractable design 

technique. 

vestigated. 

In  t h i s  chapter the problem of sens i t iv i ty  design i s  in- 

To t h i s  end sens i t iv i ty  coefficients are defined and the 

d i f fe ren t ia l  equations describing their behavior are derived. 

shown that these sens i t iv i ty  equations are always l inear  regardless of 

It i s  

the form of the equations describing the dynamic process being examined. 

Finally, Dougherty's mthod of using paramter optimization for 6 

sens i t iv i ty  design is  br ie f ly  reviewed and a method suggested for  

overcoming i ts  chief shortcoming which is  the d i f f icu l ty  of solving 

the result ing two point boundary value problem. 

14,19 3.2 Sensit ivity Coefficients 

When the sensi t ivi ty  of a dynamic process t o  certain parameters i s  

t o  be investigated, it is  necessary t o  examine the dispersion of the 

solutions of (3.2-1) fo r  varying values of the parameter q. 

F(x, x, m, q, t >  = 0 ( 3  -2-1) 

In  order t o  f a c i l i t a t e  this  examination (3.2-1) is  rewritten as a 

set of couple first order di f fe ren t ia l  equations 
e x = fb, m, ¶, t )  

x(0) = c (3.2-2) 



where  x is an n-dimensional state vector 

m is an m-dimensional control vector 

q i s  an r-dimensional parameter vector 

c is an n-dimensional i n i t i a l  condition 

It is assumed tha t  a unique solution x( t )  with x( 0) = c ex is t s  

once the control m ( t )  and the parameter q have been specified. 

Since it is generally agreed that closed loop or  feedback control 

is desirable i n  the control of dynamic systems the control l a w  i s  assmd 

t o  be of the form 

m = m(x, t )  ( 3  *2-3)  

For a given control strategy l e t  the corresponding nominaltra- 

A quantitative measure of the dependence of the solution of (3.2-2) 

on the parameter q can be obtained by expanding the solution of 

x(q, t )  about the nominal value of the parameter q = 90 

where the pa r t i a l  derivatives are evaluated at 90 and 0 ( q - ~ ) ~  in- 

dicates that the remainder terms are of second order i n  

partial derivative symbol actua.l.ly indicates a matrix which i s  defined by 

( q - s ) .  The 

i = 1, 2, ..., n 

j = 1, 2,. ..,r 
(3.2-6) 
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The elements of t h i s  m a t r i x  are defined as the sens i t iv i ty  

coefficients of the process and are denoted by 

i = 1, 2, .. .,n 

j = 1, 2, ..., r (3.2-7) 

In  a suff ic ient ly  s m a l l  neighborhood about the nomind value of the 

parameter qo these sens i t iv i ty  coefficients specify the deviation of 

the solutions of (3.2-2) from nominal due t o  the parameter variation 

g = ( g - g ) .  Thus the norm of the sensi t ivi ty  vector 11 z (')I\ can be 

taken as a measure of the t ra jectory dispersion of the dynmic system 

due t o  the perturbations of the parameter g . 
There i s  another manner i n  which the definit ion of sensi t ivi ty  

j 

coefficients can be approached. In  Section 2.2 the sens i t iv i ty  of 

(3.2-1) t o  changes i n  parameter values w a s  examined by means of direct  

1 simulation of the d i f fe ren t ia l  equation on an analog o r  d i g i t a l  eompter 

fo r  various values of the parameter g. Consider the resu l t s  of t w o  

such simulations having the solutions xo and x where 

and the parameter variation has taken place only f o r  a single element 

of the parameter vector g. 

g 3 

Comparing these two resul tant  t ra jec tor ies  give the following ex- 

pression f o r  the relative sens i t iv i ty  t o  the parameter g 
j 



This i s  defined as the sens i t iv i ty  coefficient of the s ta te  vector 

gives a x with respect t o  the parameter q 

measure of the sensi t ivi ty  of the t ra jectory 

and the norm 4 z ( ')I \  
j 

x = x(q, t )  t o  s m a l l  

changes in  q . 3 
3.3 Sensit ivity Equations 14,19 

If the sensi t ivi ty  coefficients are t o  be used as an aid i n  system 

design there must be an e f f ic ien t  method of calculating them. Assuming 

the s t a t e  equations (3.2-2) are known, a se t  of d i f fe ren t ia l  equations 

describing the sensi t ivi ty  coefficients can be derived. It w i l l  be 

shown l a t e r  t ha t  the sensi t ivi ty  coefficients can be obtained by 

simulation even when the state equations are not known. 

Taking the derivative of the s ta te  equations (3.2-2) w i t h  respect 

t o  the parameter q gives 

a b  3f b x  bf a m  b f  
ds (G) = E b4 + bm bs + bs (3.3-1) 

Using the closed loop control strategy of (3.2-3) gives 

( 3 -3-2 ) bm - B m  a x  
b s  - b x  bs  

are a l l  assumed t o  be continuous a x  a x  32 
bt' Also, since 

functions of q and t, order of different ia t ion can be interchanged and 
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Combining (3.3-2) and (3.3-3) with (3.3-1) gives 

(3.3-4) 

where all partial derivatives are understood t o  be esaluated at  the 

nominal parameter value 

vector z 

pactly as 

q = 90. If the definit ion of the sensi t ivi ty  

of (3.2-9) is used, equation (3.3-4) can be written more com- 

Since the parameters are assumed t o  have no e f fec t  on the i n i t i a l  

conditions of the system, then 

"(90 + A q, 0 )  - d q 0 ,  0 )  
z(0) = lim = o  4s A s +  0 

(3  03-61 

When the parameter variations are such tha t  the i n i t i a l  conditions 

' of the system can be effected then (3.3-6) no longer holds. For a 

discussion of t h i s  case see Appendix A. 

The sens i t iv i ty  coefficient vector z ( t )  can thus be obtained by 

the solution of (3.3-5) with z ( 0 )  = 0 .  The sensi t ivi ty  equation i s  

always l inear,  regardless of the l i nea r i ty  of nonlinearity of the dynamic 

system (3.2-2). 

that the homogeneous part is ident ical  t o  the state equation. This 

An examination of the sensi t ivi ty  equation a l so  reveals 

interesting observation i s  the basis of the s t ructural  method of solving 

the sens i t iv i ty  equations tha t  w i l l  be discussed i n  Section 4.3. 

should a l so  be noted that (3.3-5) is  valid only i f  the solution of the 

state equation (3.2-2) depends analytically on the parameter q. This 

It 

specifically excludes systems i n  which q can vary i n  such a manner as 
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t o  change the order of the state equation. That is, no variation of q 

can make the coefficient of the highest derivative of x i n  the 

or iginal  d i f f e ren t i a l  equation of the dynamic process equal t o  zero. 

Appendix B discusses t h i s  i n  more de t a i l .  

A t  t h i s  point it is  w e l l  t o  recapitulate.  For the se t  of d i f fe r -  

e n t i a l  equations 

(3.3-7) 

a measure of the re la t ive  sens i t iv i ty  of the solution x(q, t )  t o  

variations i n  the parameter q i s  given by the norm of the sens i t iv i ty  3 
vector \I z ( j  ’fl where 

It i s  clear  t ha t  a system that  i s  t o  be insensitive t o  parameter 

must i n  some sense make I\z(’)l\ as s m a l l  as possible 
‘j 

var ia t  ions 

consistent w i t h  the other c r i t e r i a  of system performance. 

attackedthis problem using an optimization technique which i s  br ie f ly  

Dougherty 

described i n  the next section. 

3.4 optimal Sensi t ivi ty  Design 

6 Dougherty sought t o  develop a procedure t o  synthesize a control 

system tha t  w a s  insensit ive t o  parameter variations but did not require 

on l i n e  computation i n  the form of a sens i t iv i ty  computer as do other 

optimal techniques. 

The dynamic system s t a t e  equations (3.3-7) and the corresponding 

sens i t iv i ty  equations (3.3-8) are  put in to  the form of a parameter 

optimization problem i n  the following manner. 
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Assume the control law m(x, t )  i s  chosen t o  be direct ly  pro- 

portional t o  the state vector of the dynamic process 

m(x, t )  = - XT x ( t )  ( 3  -4-1) 

where I? i s  an (m x n)  time invariant gain matrix. The object of 

the optimization i s  first t o  obtain satisfactory nominal response of the 

system and second t o  l i m i t  the sensi t ivi ty  of the process t o  changes i n  

parameter values. This may be expressed mathematically as 

A 
min (J + J )  
K 

where 

where 
e 

= f ( x Y  qJ t >  x(0) = c 

. 
K = O  

The usual techniques of parameter optimization are than applied 

6 3  t o  these equations yielding the two point boundary value problem 
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a = 1,2, ..., n 

(3.4-4) 

where 

k = 1,2,. . .,m 

Needless t o  say, the solution of t h i s  two point boundary value problem 

i s  a formidable task.  

steepest descent or  gradient technique with some success. The chief 

d i f f i cu l ty  with the gradient method is  the very slow convergence i n  a 

neighborhood of the optimum. For the simple second order example shown 

Dougherty applied a relaxation method based on 

i n  Chapter 4 the solution time w a s  about 15 minutes on an I B M  360/50 
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d i g i t a l  computer. For large scale problems the time becomes prohibitive. 

In  addition t o  the d i f f icu l ty  of numerical solution of the two 

point boundary value problem of (3.4-4), there is  the problem of 

choosing the weighting functions fo(x, m, go, t) and go(z, t)  which 

s p c i f y  the desired performance of the dynamic system. If the problem 

being examined i s  described by a set of linear d i f f e ren t i a l  equations 

and the performance indices are taken t o  be quadratic functionals of 

state, control and sensi t ivi ty ,  t h i s  becomes the simplest form of 

optimization problem. Even then, and when a single varying parameter 

is involved, f o r  an nth order process it is s t i l l  necessary t o  select  

a state weighting matrix of 

of m elements and a sensi t ivi ty  weighting matrix of n2 elements. 

n2 elements, a control weighting matrix 

2 

In  short, Dougherty's method is useful f o r  re la t ively simple 

problems when a l o t  of d i g i t a l  computation t h e  i s  available and when 

the designer's experience with the techniques of optimization allows 

him t o  quickly choose a good se t  of performance index weightings. For 

larger  problems a more ef f ic ien t  method of solving the sensitivitydesign 

problem of (3.4-2) and (3.4-3) is needed. 

the n m r i c a l  solution of the two point boundary value problem (3.4-4) 

using a technique such as second variations. 

associated with applying second variations t o  (3.4-4) however and it is  

not a% a11 clear  that there would be a great saving of computation time 

without a great deal of increased programming complexity. 

One way would be t o  speed up 

There are many problems 

A more 

e f f ic ien t  way is  t o  solve the sens i t iv i ty  design problem direct ly  using 

automated analog computer techniques. This method is  discussed in  the 

next chapter. 
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ANAJ;OG SENSITIVITY DE3IGN 

4.1 General 

Chapter 3 introduced sens i t iv i ty  coefficients and the d i f fe ren t ia l  

equations which describe them. 

sensi t ivi ty  vector n.\\ gives a measure of the t ra jectory sensi- 

t i v i t y  of a dynamic process t o  parameter variations. Dougherty used 

t h i s  f ac t  t o  factor  sens i t iv i ty  l imiting into the standard parameter 

It w a s  seen tha t  the norm of the 

optimization problem. The solution of the two point boundary value 

problem which results from t h i s  approach i s  d i f f i cu l t  enough t o  make 

the u t i l i t y  of th i s  method questionable fo r  large scale problems. The 

method of Analog Sensit ivity Design described i n  t h i s  chapter achieves 

the goal of developing a systematic and ef f ic ien t  design procedure of 
' l imiting t ra jectory dispersion which is  applicable t o  r e a l i s t i c  

problems. The procedure i s  such tha t  the designer can direct ly  observe 

the tradeoff between system nominal response and insensi t ivi ty  t o  para- 

meter variations.  

is  given and a simple i l l u s t r a t ive  example is  solved t o  i l l u s t r a t e  the 

A method of completely automating the design procedure 

Analog Sensit ivity Design method and compare it w i t h  other techniques. 

For simplicity the development w i l l  assume a single input system with 

a single varying paramter although neither of these res t r ic t ions  i s  

necessary . 
4.2 Basic Technique 

Analog Sensit ivity Design offers  a simple, direct  method of solving 

the sens i t iv i ty  design problem posed i n  Equations (3  -4-2) and (3.4-3). 
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That is, to determine the set of feedback gains K t ha t  give the best 

compromise, i n  some sense, between performance of the dynamic system 

f o r  nominal parameter values and insens i t iv i ty  to variations i n  these 

parameter values. From t h i s  point, the l inearized or  incremental form 

of the equations of the dynamic system w i l l  be used. Also, the per- 

f o m n c e  c r i t e r i a  w i l l  be assumed to be expressible i n  terms of the 

time in tegra l  of quadratic functions of the state and sens i t iv i ty  

vectors. Both of these res t r ic t ions  are made only to make more de- 

f i n i t e  the deta i l s  of what follows and are in  no way necessary fo r  the 

application of the Analog Sensi t ivi ty  Design Technique. The sens i t iv i ty  

design problem can now be s ta ted as follows. Determine the set of feed- 

back gains K* such that 

A 
K 1 min (J + J) 

K? 

where 

J = f f  (xT S X +  m T Rm) d t  

0 

0 
0 
x = A(q, t) x + B(q, t )  m x (0 )  = c (4.2-1) 

z(0)  = 0 .. 
K = O  



"his last restr ic t ion,  t ha t  feedback gains be constant i s  made f o r  

several reasons. F i r s t ,  most actual  control systems use constant or 

piecewise constant gains- Second, if time varying gains are considered 

then it becomes necessary t o  incorporate online computation i n  the form 

of a sens i t iv i ty  computer with a consequent increase i n  complexity and 

cost and a decrease i n  r e l i a b i l i t y .  Third, constant gains a l l o w  the 

use of greatly simplified analog computer techniques. 

Combining the control l a w  m = - $x and the s t a t e  equation of 

(4.2-1) gives the modified s t a t e  equation. 
e 
x = (A - B 2 )  x 

x(0) = c (4.2-2) 

This i s  the homogeneous par t  of the sens i t iv i ty  equation 

z(0)  = 0 

The f i r s t  s tep i n  the solution of the sens i t iv i ty  design problem 

(4.2-1) i s  wiring the analog computer t o  solve (4.2-2) and (4.2-3) 

simultaneously. This is shown schematically i n  Figure 4-1. This shows 

the simultaneous or para l l e l  solution of the two se t s  of equations. 

To perform the solutions simultar,eously two complete models of the 

dynamic process (4.2-2) are required, one f o r  the s t a t e  equations and 

one f o r  the sens i t iv i ty  equations. It i s  possible, hawever, t o  solve 

these sequentially. 

equation (4.2-2) is independent of the sens i t iv i ty  vector described 

by (4.2-3). 

This is feasible because the solution of the state 

To perform the sequential solution, (4.2-2) is  first solved 

by analog simulation and the state vector x ( t )  recorded. 



FIG.4-1 SOLUTION OF STATE AND 
SEN SOT IV I T Y E QUAT 1 O N S  



This recorded x( t )  i s  passed through the gain w where 

(4.2-4) 

and then applied t o  the same simulation network as a forcing function. 

The output of the simulator is  now 

solution of (4.2-3). 

t o  the synthesis procedure of Analog Sensit ivity Design. For th i s  

z ( t ) ,  the sens i t iv i ty  vector 

This serial technique is not direct ly  applicable 

the para l le l  solution method must be used and two separate models are 

required . 
Once the solutions of the state and sensi t ivi ty  equations are 

available f o r  some i n i t i a l  value of K, it is a simple matter t o  compute 
h 

the values of the performance c r i t e r i a  J and J 

(4.2-5) J = if (xTsx + m T Ehn) d t  

0 

L 

Since the three variables x, m, and z of (4.2-5) and (4.2-6), are 

a l l  functions of the gain vector K, these c r i t e r i a  can be minimized by 

adjusting the elements of K. This is the technique of Analog 

Sensit ivity Design. The elements of K are adjusted i n  the manner 

described by the flowchart of Figure 4-2. 

The state and sens i t iv i ty  equations (4.2-2) and (4.2-3) are solved 

fo r  a particular value of 
h 

I = J + J 
K = 5 and the value of the performance index 

computed. Each gain element i s  adjusted i n  turn by discrete 
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FIG. 4-2 ANALOG SENSITIVITY DESIGN 
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steps of magnitude 

u n t i l  I can no longer be decreased. Then the next element of K i s  

adjusted i n  a similar manner. The process continues, readjusting each 

element of K i n  tu rn  u n t i l  no increment of + 6, K i n  any element 

w i l l  decrease I. For sufficiently s m a l l  A K, the K = K which i s  

the solution of the sens i t iv i ty  design problem(4.2-1) l ies  within a 

hypercube of side 2 4 K of t h i s  value. If more accuracy i s  desired, 

K can then be in i t i a l i zed  at a value within t h i s  hypercube and the 

s tep s i z e  & K  reduced. Continuing t h i s  process w i l l  yield K t o  

within the accuracy of the computing equipment. 

hK and i n  e i the r  a positive or a negative direction 

- 
* 

* 

This technique i s  a variation of the h i l l  climbing method. 

S tab i l i ty  and convergence are guaranteed because the surface formed by 

the performance index I is convex and i ts  value i s  decreased at every 

i te ra t ion .  

for a two dimensional gain vector. 

Figure 4-3 i l l u s t r a t e s  a typical  sequence of gain adjustments 

The operations described f o r  the Analog Sensi t ivi ty  Design solution 

of the sens i t iv i ty  problem (4.2-1) can be carried out manually or  if 

the analog computer has even elementary logic capabili ty they can be 

completely automated using Figure 4-2 as a guide. 

This method of solution would not be feasible on a d i g i t a l  computer 

because of the many solutions of the state and sens i t iv i ty  equations 

required. 

an e f f i c i en t  one. 

however, a complete solution of these equations even for a 100 second 

interval  can be carr ied out at  least f ive  times per second independent 

In  t h i s  respect the Analog Sensi t ivi ty  Design Technique is not 

On a modern repet i t ive operation analog computer, 
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of the order of the equations. Thus the h i l l  climbing solution of the 

sens i t iv i ty  design problem on the analog computer can be performed at  

about 300 i t e ra t ions  per minute fo r  a dynamic system of v i r tua l ly  any 

order having a se t t l i ng  time of 100 seconds or less. O f  course the 

larger  the dynamic system being investigated, and the higher the order 

of the describing d i f fe ren t ia l  equation, the more analog computation 

equipment i s  required t o  implement the solution. 

----- 

4.3 The Structural  Method 

Analog Sensi t ivi ty  Design as  presented above requires a mathematical 

description of the dynamic process. The s ta r t ing  point f o r  the pro- 

cedure i s  the se t  of d i f fe ren t ia l  equations (4.2-2). 

cases, however, when the engineer i s  presented with an actual subsystem 

and i s  required t o  minimize the sens i t iv i ty  of t ha t  physical device t o  

There are often 

j a particular parameter by se t t ing  the values of cer ta in  gains. Using 

Analog Sensi t ivi ty  Design t h i s  desensitization can be performed direct ly  

on the device without having t o  resor t  t o  a mathematical model of 

questionable accuracy. 

doing t h i s  fo r  l inear  dynamic systems. 

This section describes a s t ructural  method23 for 

Consider the dynamic system composed of n l inear  elements as 

shown i n  Figure 4-4. The input and output of the system are x ( t )  and 

y ( t )  respectively. 

x 

of the ith element at  t i m e  t t o  an impulse at time “r is denoted by 

h i ( t , r ) .  The dynamic character is t ics  of the ith element can then be 

The input signal t o  the ith element is  denoted by 

and the output of the ith element i s  denoted by yi. The response i 



FIG. 4-4 LINEAR DYNAMIC SYSTEM 
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denoted by the relat ion 

t 
Y & t )  = I h i ( t , V  X i W )  d 7  i = 1, 2 ,..., n (4.3-1) 

0 

Furthemore, the topology of the system or the interconnections 

between the elements can be expressed by the algebraic matrix equation 

AU + Bv = 0 (4.3-2) 

where 

u =  [ i] 
X 

v =  (4.3-3) 

The A and B matrices are constructed i n  the following manner. 

Assume the system (4.3-1) has m separate interconnections between 

elements with each signal f low path counting as one interconnection. For 

1 example in  Figure 4-4 there are f ive interconnections labelled c 

and therefore m = 5. Then fo r  each of these interconnections c5’ through 

or signal flow paths a row of A and a row of B are defined. If inter-  

connection c goes from xj  t o  yk then aij - - - 1 and bik = + 1. 

If ci goes from y t o  x j ,  then aij = + 1 and bik = - 1. Thus 

the A and B matrices f o r  the system of Figure 4-3 are 

i 

k 

A =  B =  - 1 0 0 1  

0 - 1  0 0 : 0 0 - 1  -:1 0 

(4.3-4) 
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These matrices completely determine the structure of the physical 

system. 

Now the numbering of the elements of the system i s  done i n  such a 

manner tha t  the first r n elements depend on the parameter q 

while the remaining (n-r ) do not. 

The sens i t iv i ty  vector is defined as 

b v  
bs 

z = -  (4.3-5) 

where now the outputs of the l inear  elements take the role of s t a t e  

variables. 

N e x t  define a completely different  system which i s  called the 

sens i t iv i ty  system. The structure of t h i s  sens i t iv i ty  system can a l so  

be completely described by a topological equation 

A ' j d + B ' @ = O  (4.3-6) 

In order t o  keep the character is t ics  of the sens i t iv i ty  system 

similar t o  those of the or iginal  system, t h e i r  structures are arbi- 

t r a r i l y  made ident ical .  That i s  

A ' = A  B '  = B 

The sens i t iv i ty  structure i s  thus defined by 

A j d + B  @ =  0 (4.3-7) 

If (4.3-2) i s  different ia ted with respect t o  the parameter q and 

the assumption made that no variation of the parameter changes the inter-  

connections between system elements then 



39 

If t h i s  equation i s  compared with (4.3-7) it can be seen that under 

the res t r ic t ions  made 

b U  
# = b q  

d v  
@=bs (4.3-9) 

Thus the variables i n  the sensi t ivi ty  system are the desired 

sensi t ivi ty  functions of the original system. It remains, however, t o  

determine the characterist ics of the elements i n  the sensi t ivi ty  structure.  

Differentiating the defining equation of the l inear  elements (4.3-1) 

with respect t o  the parameter g gives 

b xi 
a s  

- =  yi st h i ( t , r )  - (7') d r  

0 
a s  

i = r + 1,. . . ,n (4.3-10) 

for the 

b Y i  

bs 

fo r  the 

elements independent of the parameter and 

b X i  
= f h i ( t , 7 )  'bs (7) dv + b bhiht,r) xi('?') d v  ( 4  3-11) 

0 0 

i = 1, 2, ..., r 
elements of the dynamic system tha t  depend on the value of the g. 

But using (4.3-9) and (4.3-3) these derivatives can be writ ten as 

(4.3-12) 

Using these relat ions (4  3-10) and ( 4.3-ll) become 

i = r+l, .. .,n 



This says simply tha t  the elements i n  the sensi t ivi ty  system are 

identical  with those i n  the original dynamic system when those elements 

are independent of the parameter g. When the elements of the dynamic 

system do depend on the value of the parameter the elements i n  the 

sens i t iv i ty  system are s t i l l  the same as those i n  the original dynamic 

system with one exception. Added t o  the output of these elements i s  a 

signal formed by passing the input t o  the corresponding element i n  the 

dynamic system through a new element having the impulse response. 

When t h i s  s t ructural  method i s  applied t o  the system of Figure 4-4 

and it i s  assumed that only t h e  element h depends on the paramter g 

the sens i t iv i ty  structure of Figure 4-5 resu l t s .  This example indicates 

the simplicity of the method and the ease with which it can be applied. 

3 

The one drawback t o  t h i s  method of obtaining the sensi t ivi ty  

coefficients i s  immediately obvious. 

impulse response of the l inear  elements changes with variations in  the 

parameter g i n  order t o  construct the ki of (4.3-14). Once the 

system has been broken down t o  the elemental level,  however, t h i s  infor- 

mation would usually be available o r  could be constructed experimentally 

with acceptable accuracy. 

It i s  necessary t o  know how the 

In svunmary, the sens i t iv i ty  coefficients z of a physical system 

consisting of the interconnections of linear elements can be determined 

i n  the following manner. 

t o  the model of the dynamic process except fo r  the addition of extra 

signals at the output of each element which i s  dependent on the paramter g. 

i 

A sens i t iv i ty  model is  used which i s  identical  
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These signals are the inputs of the corresponding elements i n  the physical 

system passed through additional elements with the impulse response 

Once the sens i t iv i ty  coefficients have been constructed using the 

sens i t iv i ty  system, the Analog Sensi t ivi ty  Design technique of Section 

4.2 can be applied d i rec t ly  with one unfortunate difference. 

dealing with the physical system rather than an analog simulation it 

is i n  general impossible t o  speed up the solution. Each i te ra t ion  of 

Figure 4-1 must take as long as the system se t t l i ng  t i m e .  

price tha t  must be paid f o r  the design of a desensitized system without 

knowledge of the d i f fe ren t ia l  equations describing the over-all system. 

When 

This i s  the 

4.4 Performance Index Sensi t ivi ty  

A f t e r  a design has been accomplished it i s  of in te res t  t o  determine 

The main measure of t h i s  j u s t  how insensit ive the system has been made. 

is  of course the re la t ive  magnitude of the sens i t iv i ty  coefficients 

before and a f t e r  the desensitization. Some times, however, the relat ive 

sens i t iv i ty  of the performance index i s  of interest ,  esgecially i n  those 

cases when the index has a val id  physical interpretation. Analog 

Sensi t ivi ty  Design extends t o  t h i s  problem quite eas i ly .  

Since the J portion of the c r i te r ion  of the sens i t iv i ty  design 

problem (4.2-1) is  determined by the state response it is  the par t  whose 

sens i t iv i ty  is  of in te res t .  If the control l a w  m = - K x is  sub- 

s t i t u t ed  into the cr i te r ion  it becomes 

T 



J = if xT(S + 3 RK) x d t  
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(4.4-1) 
0 

This can be differentiated with respect t o  the parameter q t o  

give the prformance index sensi t ivi ty  

tf 
bJ (qo) = I [ a xT ( S  + E?RK)x + x T ( S  + K?RK) -1 d t  (4.4-2) 

b q  3 s  
0 

b q  

4 X  
b q  

The vector - 
Equation (4.4-2) can 

i s  recognized as  the sensi t ivi ty  vector z .  

then be rewritten as 

tf 
(qo) = 1 zT [(S + SRK) + (S + 3 R K I T ]  x d t  

0 

( 4 04-3 

If, as i s  most often the case, S and R are diagonal matrices, or  

a t  l ea s t  symmetrical, t h i s  becomes 
c 
bf 

b J  (qo) = 2 $ zT(S + 3RK)x dt  

0 
b q  

(4.4-4) 

Equation (4.4-4) allows the computation of the performance index 

sensi t ivi ty  at  the nominal value of the parameter q = once the s ta te  

and sens i t iv i ty  vectors have been calculated. 

Design p e r m i t s  calculation of (4.4-4) simultaneously with the state 

sens i t iv i ty  coefficients.  If desired, t h i s  performance index sensi t ivi ty  

integral  can be adjoined t o  J and J t o  form a new index of per- 

formance when maximum flatness  of the original index J is desired. 

Using Analog Sensit ivity 

A 

This brings t o  l i gh t  an important point. When dealing with Nature 

every improvement has i ts  price and sensi t ivi ty  design i s  no exception. 

The price paid f o r  decreased system sensi t ivi ty  t o  parameter changes i s  
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degradation i n  the response of the system when parameters have t h e i r  nominal 

values. The system designed solely on the basis of nominal parameters 

w i l l  be "better" i n  some sense fo r  these nominal values and i n  a small 

neighborhood of t h e m .  There is  a cer ta in  c r i t i c a l  parameter variation, 

however, beyond which the system designed on the basis of sens i t iv i ty  

concepts w i l l  be "better".  If the performance index J i s  taken as a 

measure of the worth of a system this  trade off can be expressed i n  the 

two curves of J vs.  q sketched i n  Figure 4-6. This shows tha t  the 

performance index of the system designed using sens i t iv i ty  techniques 

is  flatter than tha t  of the system designed without them, termed the 

optimal system, but i t s  minimum value is  not as low. For th i s  example 

the optimal system i s  best f o r  q f ( q l ,  %) 
system i s  be t t e r  f o r  q outside th i s  range. 

and the sens i t iv i ty  design 

~ 4.5 Trimming the Design 

One of the unique advantages of the Analog Sensi t ivi ty  Design 

Technique is the ease with which an i n i t i a l  design arrived at  by 

analyt ical  o r  i t e ra t ive  means can be "trimmed" t o  meet actual response 

sens i t iv i ty  requirements. A s  mentioned above, one of the major dis-  

advantages of optimal control o r  any method which arr ives  at  a system 

design by minimization of an index of performance i s  the d i f f icu l ty  of 

selecting a meaningful performance c r i te r ion .  A s  presented here, the 

automatic i t e r a t ion  scheme of Analog Sensi t ivi ty  Design a l so  suffers 

from t h i s  problem. 

converged on a gain vector K which minimizes the performance index 
A 

1 = J + J K* 

However when the design process of Figure 4-2 has 
* 

it is then a simple matter t o  tr im these gains about 
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manually while observing the ef fec t  direct ly  on an output device such 

as an oscilloscope. 

being solved simultaneously the designer can examine both the nominal 

response and the sens i t iv i ty  coefficients. If (4.4-4) is implemented 

the i n i t i a l  slope of the performance index J at  q = 

displayed. 

judgement and experience with similar systems t o  arrive a t  a f i n a l  set 

Since both the state and sens i t iv i ty  equations are 

can also be g0 

Using a l l  of this information the designer can employ h i s  

of gains that afford the best compromise between nominal response and 

insensi t ivi ty  t o  parameter variations.  

4.6 Second Order Example 

In  order t o  i l l u s t r a t e  the method of Analog Sensit ivity Design and 

compare the result ing system with o the r  techniques the following example 

w a s  used: 

Consider the second order d i f fe ren t ia l  equation given by (4.6-1) 

(4.6-1) 

Assuming the nominal value of the parameter q is  equal t o  one, 

= 1, makes (4.6-1) a harmonic osci l la tor  with nominal damping equal 

t o  zero. The control input m ( t )  is t o  be formed by feedback from dis- 

g0 

placement and rate variables x,(t) and q(t) respc t ive ly .  

(4.6-2) 
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Using equation (4.6-1) i n  the general form of the sensi t ivi ty  

equation fo r  l inear  systems with state feedback control (4.2-3) gives 

the equation f o r  the  sensi t ivi ty  coefficients 

Using the nominal value of the parameter = 1 ie (4.6-1) and 

(4.6-3), the control l a w  (4.6-2), and performing the indicated differ- 

ent ia t ion yields the f i n a l  nominal s ta te  equation (4.6-4) and sensi t ivi ty  

equation (4.6-5) 

0 

-1 
x ( 0 )  = 

0 

(4.6-4) 

Note that as required, the homogeneous part of the sensi t ivi ty  

equation i s  ident ical  to the state equation. 

The performance index selected to represent the desired response of 

the system (4.6-4) i s  

(4.6-6) 

The sens i t iv i ty  vector is  given considerably higher weighting than 

the state vector i n  order to make the system insensitive to changes in  q, 
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the damping parameter, by requiring the magnitude of the sensi t ivi ty  

vector t o  be kept small. 

This problem was first  solved using d i g i t a l  parameter optimization 

without consideration of the sensi t ivi ty  index (4.6-7) or  constraining 

equation (4.6-5). The result ing system response f o r  various par-ter 

values, shown i n  Figure 4-7 and Figure 4-8, w i l l  serve as a basis w i t h  

which desensitization can be compared. The optimal gains were computed 

t o  be 

(4.6-8) 

Figure 4-7 and Figure 4-8 show the rate  and displacement i n i t i a l  

‘ condition response respectively f o r  q = 0.8, 1.0, and 1.2. It i s  

obvious that  there i s  considerable t ra jectory dispersion fo r  th i s  range 

of parameter values. Figure 4-9 shows %he response of the sensi t ivi ty  

coefficients f o r  th i s  undesensitized case. These were obtained by the 

solution of the sens i t iv i ty  equation (4.6-5) simultaneously w i t h  the 

state equation using the gains (4.6-8). 

Next the sensi t ivi ty  problem, with the sens i t iv i ty  index included, 

w a s  solved using Dougherty‘s digi ta l  parameter optimization scheme 

described i n  Section 3.4. 

point boundary value problem (3.4-4) r e s a t i n g  from the application of 

the equations of parameter optimization using a first order gradient method. 

Recall that th i s  technique solves the two 



I 0 u) 

0 
I 

rc. 

49. 

w 
I- 
Q 
CIL 

b 
I 



6J 
x 

0 
0 

I 
(II 



N '  I 
I 

0 
0 c"! 

0 
I 



52 * 

Starting from the origin 

zero, convergence t o  the 

on an IBM 360/50 d i g i t a l  

i n  gain space with both % and % equal t o  

optimal gains took approximately 1.5 minutes 

computer. These optimal gains were 

The 

shown i n  

somewhat 

extent. 

i n i t i a l  condition response of the system using these gains i s  

Figure 4-10 and Figure 4-11. 

l e s s  than before so the. system has been desensitized t o  some 

It can also be seen, however, t ha t  the system is somewhat 

Row the t ra jectory dispersion i s  

slower responding than before. This is  the price tha t  has been paid 

f o r  the desensitization; nominal response has suffered. Figure 4-12 

shows the sens i t iv i ty  coefficients f o r  t h i s  system and t h e i r  reduction 

i n  magnitude over those of Figure 4-8 is  immediately apparent. 

The ident ical  problem was  next solved using the Analog Sensi t ivi ty  

Design Technique. 

Because of the lack of logic  capabili ty on the two EA1 TR 20's available, 

the Analog Sensi t ivi ty  Design Technique could not be automated as 

described i n  Section 4.2. 

carried out exactly as i f  the flowchart of Figure 4-2 had been imple- 

mented d i rec t ly  f o r  t h i s  system. 

in i t i a l i zed  at zero. The i n i t i a l  s tep s i z e  w a s  taken as K = 0.5. Using 

The simulation diagram i s  s h m  i n  Figure 4-13. 

However, manual solution of' the problem was 

As i n  the d i g i t a l  case the gains were 

t h i s  s tep  s ize  the algorithm converged i n  19 i t e ra t ions  t o  

= (:::I ( 4.6-10) 
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The s tep size was  then reduced t o  K = 0.1 an6 s ta r t ing  from the 

gains of (4.6-10) convergence t o  

= (3 (4 .6- l l> 

took 6 i terat ions.  

t o t a l  of 25 i terat ions.  Since the repet i t ive operation mode of the EAI 

TR 20 speeds up solutions by a factor  of 500, these 25 i terat ions if  

This convergence t o  two significant f igures took a 

performed automatically would take about 0.5 seconds. This figure does 

not of course allow f o r  the time necessary t o  change the gain potentio- 

meter set t ings but even so, it makes dramatically c lear  the advantage 

of Analog Sensi t ivi ty  Design over other methods. 

adjustment of the gains, the solution took less than two minutes on the 

analog computer. 

Even w i t h  manual 

The resul t ing t ra jec tor ies  of the Analog Sensi t ivi ty  Design are 

exactly the same as those of the parameter optimization method since 

the result ing gains were essent ia l ly  the same. “he only advantage up 

t o  t h i s  point has been increased speed of solution. Now, however, it 

is possible t o  t r im the values of the feedback gains manually t o  fur ther  

improve the design without having t o  experiment with many different  sets 

of weighting matrices. The following figures show the results of 

trinrming the gains while observing the e f fec t  on the nominal response 

and sens i t iv i ty  coefficients and selecting those which gave the best  

compromise between adequate nominal response and minimization of the 

sens i t iv i ty  coefficients.  These compromise gains are 



K* = (:::) (4.6-12) 

Figure 4-14 and 4-15 show the i n i t i a l  condition response of the 

system f o r  various values of the damping parameter g. 

seen tha t  these responses are less sensitive t o  variations i n  g than 

were those of the system shown i n  Figure 4-10 and Figure 4-11 using the 

gains of (4.6-9). 

It i s  readily 

The sens i t iv i ty  coefficients are shown i n  Figure 4-16 

and as e w c t e d  they have the smallest magnitude of the three systems. 

It is interesting t o  compare the eigenvalue sens i t iv i t ies  for the 

Recall tha t  two desensitized systems using the method of Section 2.4. 

the eigenvalue sensi t ivi ty  of the system 
e 
x = A x  

i s  given by 

(4.6-13) 

( 4-6-14) 

where  

and the 

(hi, vi) are the eigenvalue-eigenvector pairs of the matrix A 

T 
ui are the corresponding eigenvectors of the matrix A . 

For the present exampk the gains (4.6-9) the A matrix i s  

and the 

(4.6-15) 

eigenvalue sens i t iv i t ies  which are computed i n  Appendix C are 

(4.6-16) 
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Similarly, f o r  tJx? gains (4.6-12) obtained by using Analog Sensi t ivi ty  

Design the eigenvalue sens i t i v i t i e s  are 

3 
a s  
- (s,) = 1.2 (4.6-17) 

Thus as could be expected by comparing the t ra jec tor ies  of the two 

systems, trimming the gains manually after the automatic i t e ra t ive  design 

was complete improved the eigenvalue insensi t ivi ty  of the system (4.6-1) 

as well as the t ra jectory insensi t ivi ty .  These two improvements appear t o  

go hand i n  hand. 



CHAPTER 5 

CASE STUDY: FLEXIl3L;E BOOSTER CONTROL 

5 .1  General 

I n  order t o  demonstrate the u t i l i t y  of the Analog Sensit ivity Iksign 

Technique developed i n  Chapter 4, a r e a l i s t i c  case study w a s  undertaken. 

This chapter examines the problem of developing a feedback control 

system f o r  a large flexible booster and desensitizing it t o  variations 

i n  bending mode frequency. 

frozen time point model of the f lexible  booster t o  design the control 

system. The result ing system is tes ted by d i g i t a l  simulation using a 

time varying model excited by a worst case design wind. This  design 

wind is  constructed t o  excite any i n s t a b i l i t i e s  t h a t  are inherent i n  the 

system design. 

Analog Sensit ivity Design i s  used on a 

25 5.2 The Problem 

As launch vehicles become progressively larger  and more complex it 

becomes more and more d i f f icu l t  t o  determine the exact values of the 

many parameters which effect the performance characterist ics.  One of 

the most d i f f i c u l t  sets of data t o  obtain are those relat ing t o  the 

flexural modes of the vehicle. It i s  w e l l  known from elementary 

mechanics that as the length of an object is  increased and i ts  diameter 

decreased, bending response t o  any off axial forces becomes more pro- 

nounced. 

vehicles i s  ten t o  one or higher. Thus the vehicles are quite flexible 

and t h i s  characteristic must be taken i n t o  account i n  the design of a 

Typically the length t o  diaxeter r a t i o  of today's launch 
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control system. If it is not taken in to  account then the structural 

loading i n  regions of high dynamic pressure may be such that the elastic 

l i m i t  of the structure i s  exceeded and the vehicle destroyed. 

Unti l  now the bending character is t ic  of the vehicle have been 

determined by dynamic tes t ing  of the actual booster. This involves 

mounting the en t i r e  vehicle i n  a huge tower and shaking it. The result-  

ing deflections a t  different  stations along the vehicle are recorded 

and a complete bending parameter analysis performed. The tremendous 

s ize  of the Saturn V - Apollo configuration shown i n  Figure 5-1 makes 

t h i s  operation just marginally possible. For larger  vehicles it may 

not be possible. Even f o r  the Saturn V - Apollo, however, changing 

mission requirements and changing payloads cause the actual bending 

characterist ics t o  d i f f e r  s l ight ly  i n  each vehicle. Thus the bending 

characterist ics,  particularly the natural  frequency of each mode, may 

not be known accurately enough f o r  successful control of the vehicle. 

This i s  where Analog Sensit ivity Design can be used. 

design a control system f o r  the Saturn V - Apollo t h a t  gives adequate 

The problem i s  t o  

control when the bending frequency may d i f f e r  from the nominal value by 

as mch as 2%. 

To complicate matters further, the r ig id  body mode of the vehicle 

is  aerodynamically unstable. 

being forward of the center of gravity. 

This is a r e s u l t  of the center of pressure 

The aerodynamic forces tend t o  

rotate  the vehicle away from the nominal trajectory.  Figure 5-2 shows 

plots  of the center of pressure and center of gravity during the boost 

phase of the f l i g h t .  The vehicle i s  obviously unstable f o r  a l l  but a 

short t i m e  around 60 seconds where the center of pressure br ie f ly  moves 
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off of the center of gravity. Thus continuous engipe gimbal angle control 

must be used t o  keep the vehicle i n  the nominal orientation. 

Figure 5-3 shows the frequency spectrum of the Saturn V - Apollo 

during the boost phase. This spectrum shows the frequencies of all 

important modes of the r igid,  bending and sloshing bodies. The slosh 

modes, which w i l l  not be considered here, are a r e su l t  of the fuel 

moving i n  the tanks as the vehicle f l ies .  The frequencies are spread 

out into bands rather than l i nes  at  particular frequencies because the 

dynamic character is t ics  of the vehicle change with t i m e .  

I n  general there are two types of feedback control systems that can 
c 

be considered for the Saturn V: d r i f t  minimum and load r e l i e f .  The 

D r i f t  minimum system takes as i t s  major objective the control and 

minimization of lateral d r i f t  away from the reference trajectory.  This 

involves the use of pitch, pi tch ra te  and lateral velocity feedback. 

This type of control is used where flexural loading does not play an 

important par t  and lateral d r i f t  is  detrimental t o  the mission. Un- 

fortunately, under cer ta in  conditions a d r i f t  minimum control system 

can cause excessive s t ruc tura l  loads on the Saturn V .  Thus it i s  

necessary t o  go t o  a load r e l i e f  type of control system. 

of these uses only pi tch and pi tch ra te  feedback t o  control. the vehicle. 

This allows the vehicle t o  dr i f t  with the wind avoiding the buildup of 

large bending moments. Other types of load relief systems are possible, 

The simplest 

but t h i s  one involving only pi tch and pi tch ra te  feedback w i l l  be 

considered here because of i t s  simplicity. Also  primarily f o r  simplicity 

a control system using constant feedback gains f o r  the ent i re  f l i g h t  
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w i l l  be sought. Several control schemes using programmed gains have 

been developed but t h i s  w i l l  not be attempted here. A s  w i l l  be seen 

later i n  t h i s  chapter it i s  possible t o  f ind  an en t i re ly  successful 

control system desensitized t o  changes i n  bending mode frequency using 

constant feedback gains. 

5.3 Equations of Motion 7,25 

The first s tep i n  the development of a control system f o r  the 

Saturn V - Apollo is the derivation of the d i f f e ren t i a l  equations des- 

cribing the behavior of the vehicle. F i r s t  the r ig id  body equations 

are derived assuming a flat  ear th  and considering only the pitch plane 

of the vehicle. 

A s  usual i n  t h i s  type of problem it is necessary t o  work with 

several co-ordinate systems. The first of these has i t s  origin at  the 

launch point w i t h  i t s  X and Y axes a t  the loca l  horizontal and 

loca l  ve r t i ca l  respectively. This is  known as the i n e r t i a l  co-ordinate 

system. 

center of gravity. These are the x-y axes with the x axis lying 

along the center l i ne  of the vehicle and the 

it i n  the pi tch plane. This i s  the body fixed co-ordinate system. A 

t h i rd  co-ordinate system has i ts  Xn 

t ra jectory and i ts  

This is  called the nominal co-ordinate system. 

co-ordinate systems with a free body diagram of the vehicle. 

The second set of axes moves with the origin a t  the vehicle 

y axis prpendicular t o  

axis tangential  t o  the nominal 

axis perpendicular t o  it i n  the pitch plane. Yn 

Figure 5-4 shows these 

Summing forces i n  the Xn direction gives 

Fx = (F+R' cos B-0) cos (6-N s i n  (6-R' s i n  8 s i n  6 - mg cos (xc-x) (5.3-1) 
n 
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Summing forces i n  the Yn direction gives 

= (F+R' cos f3-D) s in  $+N cos (btR' s in  f3 cos $-mg sin(xc-x) (5 .3 -2 )  
n FY 

S m i n g  torques about the center of gravity gives 

.e 
I 6 = - R'  lCg s i n  p - N lCp (5  -3 -3 )  

The angle Xc 

desired mission prof i le .  

i s  the pitch command angle and i s  determined by the 

The velocity of the vehicle v can be expressed i n  terms of the 

nominal co-ordinate system as 

7 .., .L v = v cos* 2 + v s i n 9  J (5  -3-4) 
m 

where v = 

and Yn directions respectively. 

and the ? and j vectors are uni t  vectors i n  the Xn 

The acceleration of the vehicle, a, i s  then given by the time 

z derivative of (5.3-4) 

.c du - dT d~  cos\,^ - v s i n g  - C  + v c o s 3  - d t  d t  
a = -  

The derivatives of the uni t  vectors are shown i n  Appendix D t o  be 

given by 
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Using these relat ions the acceleration of the vehicle may be ex- 

e 0 .I 

s i n g  + v c o s g ~  - v cos 3 xcl  j (5.3-6) 

Recognizing the following relat ions 

e* d 0 d 0 0 x - v s i n W  = -  (x,) = E (v  c o s 9  ) = v c o s 3  n d t  

(5.3-7) 
ea d '  d 
yn = - (Y,) = at (v s i n 3  = v s i n 9  + 'v c o s 6  

d t  

al lows the vehicle acceleration (5.3-6) t o  be writ ten as 

c "  z .* * -  
a = (x, + v sin* xC) i + (yn - v c o s 3  x,) j (5-3-8) 

If t h i s  i s  substituted into the force balances (5.3-1) and (5.3-2) 

the f i n a l  equations f o r  the motion of the vehicle i n  terms of the nominal 

co-ordinate system resu l t  from Newton's Law. 

*. a 
m ( x  + v s in \ )  x ~ )  = ( F  + R '  cos p - D )  cos # - N s in  # n 

-R' s in  p s in  # - mg cos xC (5.3-9) 

e* e 
m(Yn - v c o s 3  xc) = ( F  + R '  COS p - D) s in  # + N COS # 

These equations can be l inearized by making the usual small angle 

approxirnations 

s in  # = j5 

cos j5 = 1 

s in  f3 = f3 

cos f3 = 1 

sin  p s in  # = o 
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Under these assumptions the l inearized versiocs of the vehicle 

equations of motion are 

** 
+ R'  - - g cos xc m x =  n 

e. N R'  F + R' - D (6 + - + - p + v xC - g s i n  xC 
Y =  m m  n m 

( 5 * 3-11 1 

If the origin of the nominal co-ordinate system is allowed to move 

with the vehicle i n  the Xn direction t h i s  eliminates the Xn degree 

of freedom leaving only (5.3-12) and (5.3-3) to describe the motion of the 

r ig id  vehicle. 

The aerodynamic normal force, N, of (5.3-12) i s  proportional to the 

angle of attack CI and i s  thus given by 

N = N ' a  

If the t o t a l  thrust of 

' (5  3-12)  can be written as 

the vehicle is denoted by T = F -+ R '  then 

Usually the vehicle is  allowed to f l y  a gravity turn trajectory i n  

which case the pitch command angle is  given by 

g s in  Xc 
x =  

C v (5  03-14] 

and the last two terms of (5.3-13) cancel. !Thus the f i n a l  equation 

becomes 

R1 B Yn = (y-> (6 + ma + - m 
T-D N' e. 

(5.3-15) 

Making the smal l  angle approximation on the moment equation (5.3-3) 

gives the pitch angle equation 
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R '  1 N 1  1 
6 = - (9) B - (9) a 

Finally there i s  the equation relat ing the pitch angle and the angle 

of attack 

'n a - aw = 6 - - v 

These three equations (5.3-15), (5.3-16) and (5.3-17) completely 

describe the linearized r ig id  body motion of the Saturn V about its 

nominal trajectory.  

Next the bending effects  mus t  be examined. Three bending modes w i l l  

be considered t o  be of significance here: the first, second, and th i rd .  

For simplicity the equations describing these three modes are assumed t o  

be those of a l inear  osci l la tor  driven by a forcing function proportional 

t o  the gimbal angle f3. These equations are writ ten in  terms of normal- 

ized eo-ordinates such that the deformation a t  any s ta t ion along the 

vehicle i s  given by the value of the normal eo-ordinate multiplied by 

the mode shape coefficient f o r  that s ta t ion.  The equations are 

The normalization i s  t a k n  with respect t o  the gimbal plane so that 

the solution of (5.3-18) gives the actual deflection at  the gimbal 

direct ly .  Notice that the forcing function depends on Y(x ) the mode 

shape at  the gimbal station. 

A s  mentioned above, it was decided t o  use pi tch and pitch rate feed- 

B 

back t o  control the vehicle. The l inear  control l a w  i s  given by 
0 $ =  - 56-  5 6 (5.3-19) 
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Unfortunately, because of the f lexible  nature of the Saturn V it 

i s  impossible t o  measure these quantit ies directly.  

rate are measured by gyros placed somewhere on the vehicle fram. 

Pitch and pi tch 

For 

the Saturn V 

x D =  
x R =  

these positions are 

79.8 meters 

67.3 meters 

respectively. Thus the gyros can measure only conditions at  these 

particular points, t ha t  is, loca l  pitch and pitch rate. These measure- 

ments are corrupted by bending information and are i n  general impossible 

t o  extract  from it. 

using available measurements i s  

The actual control l a w  tha t  must be implemented 

4 
= % fiD - 5 fiB (5  3-20] 

0 

where  

1 signal of the pitch rate gyro. 

these are, respectively 

6, i s  the output signal of the pitch gyro and fiB is  the output 

For the vehicle with three bending modes 

3 

k i=l 

i = 1, 2, 3 

t h  The terms Yil(x,,,) and Y i l ( ~ )  are the mode slopes fo r  the i 

mode at the pi tch and pitch rate gyro stations.  

The equations describing the flexible booster can then be sumraarized 

as 



*e =(-;;;-)fj+,a+,B T-D N' R1 
'n 

b. R 1  1 B' 1 
$5 = - (9) B - (9) a (5  03-23] 

*e R' Yi(XB) 
2 . -  c B i=1,2,3 (5.3-24) 

i qi  + 2 1 i  ai? + ai m 

3 

i=l 

. 
v I n a - aw = 16 - - v 

(5.3-25 

The variable 

more compact set .  

respect to time gives 

Yn 

Solving (5.3-28) fo r  in and differentiating w i t h  

can be eliminated from these equations to give a 

0, e o  + *  e 
Yn = v 16 - v(a - aw) - v(a - aw) + 16 v (5 *3-29) 

Equating th i s  w i t h  (5.3-22) and solving f o r  a gives 

(5 93-30) N' v m T-D e 
a = - ( F + f 5 + p L  (m - + - ) a m -  v 

Thus the r ig id  booster is  described by (5.3-30) and (5.3-23). 

5.4 State Equations of the Flexible Booster 

Equations (5.3-23), (5.3-30) and (5.3-24) through (5.3-27) completely 

define the system dynamics of the flexible booster m o d e l  used i n  th i s  



case study. 

following state equation 

These can be put in to  state equation form by defining the 

* e  
x = A x + b @ + u ( t )  ( 5  94-11 

where x i s  the state vector, @ the scaLar gimbal angle, A the vehicle 

state matrix, b the controller vector and 

These given by 

x =  

A =  

b =  

r 0 

0 

D 

'1 -(F - T-D 

0 

i o  

0 
N' 1 
-cp 

I 

0 

u ( t )  = 

(5.4-2) 

u ( t )  a disturbance vector, 

0 0 \ 
0 0 

0 0 

0 1 
2 

-a i ai ai , 

I 0 

0 

0 
e 
V 
v w  - a  + a w  

0 

I o  



The control l a w  for t h e  state variable model is written as 

P = - K T x  (5.4-3) 

where r is  a mea.suremnt matrix which takes in to  account the fact that 

neither pitch nor pitch rate can be observed direct ly  but are corrupted 

by bending. Thus the measurement m t r i x  r i s  given by 

A l l  of these matrix equations have included only one bending mode 

for simplicity. The a c t u d  model uses a l l  three modes simultaneously 

which makes the state equations somewhat more involved but of the same 

form. 

The state equations of (5.4-2) w i t h  the control l a w  of (5.4-3) are 

more d i f f i cu l t  t o  deal w i t h  than i s  necessary. 

l i es  i n  the measurement matrix r . 
(5.4-2) could be measured direct ly  then P 

The root of the d i f f icu l ty  

If the states “1 and % of 

would be of the form 

and could be dropped by simply adjoining extra zero gains t o  the feedback 

vector 

The state equations would. then be of the form 
0 
x = A x + b  f 3 + u ( t )  

@ = - E ; p x  

x(0) = c 

(5.4-5 1 



or  more simply 
e x = (A - bK?) x + u ( t )  

x(0)  = c ( 5.4-6) 

This simplification can be accomplished by choosing as the state 

variable 5 and % the actual  measured quantit ies ra ther  than r ig id  

body pi tch and pi tch rate. Using the output of the pi tch and pi tch ra te  

gyros as the f irst  and second state variables causes the quantit ies of 

(5.4-6) t o  become 

0 

0 

0 

N 1  1, -2 
I 

0 

0 

0 

0 

2 
i -a 

'i 

-2 
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b =  

u =  

0 

0 
0 
v - a  4- v w  

0 

0 

0 

+ Yi'("R> 

R' - -  
m 

0 

m i 

S O 0  

m i 

0 

(5 .4-74 

(5 .4-74  

Equation ( 5.4-6) with the definit ions of ( 5.4-7) represents the 

A l inear  time varying description of the Saturn V - Apollo vehicle. 

table of the time varying values of these parameters i s  included i n  

Appendix F. 

and a 
aW W 

The disturbance term, u( t ) ,  contains a function of 

which are thus seen t o  play the role of external. disturbances acting on 

the vehicle. The selection of a meaningflrl wind f o r  use i n  the evaluation 

of any control system design i s  important and is  considered br ie f ly  in  

the next section. 
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5.5 Wind Disturbance 

The state equations (5.4-6) and (5.4-7) make it clear  that the only 

external disturbance acting on the booster i n  f l i g h t  i s  wind. 

alters the apparent angle of a t tack by an amount a . This can be re- 

la ted  t o  the vehicle velocity and wind velocity by examining Figure 5-5 

which i s  a d e t a i l  of Figure 5-4 f o r  the case when a = jd = 0. 

when the vehicle is  on the nominal trajectory.  From Figure 5-5 

The wind 

W 

That i s  

v cos xc 
W - - 

aw v-v s i n  xC 
W 

where v i s  the wind velocity, v i s  the vehicle velocity and Xc is  

the pi tch command angle measured from launch vertical.. 

nominal values of v and Xc and either measured or assumed values of 

v a wind angle of a t tack prof i le  can be constructed f o r  use i n  the 

forcing function u ( t )  o r  (5.4-7). A synthetic wind speed profile,  

shown i n  Figure 5-6, was constructed. 

t ha t  exceed those of 95% of the measured winds i n  the May t o  November 

period at Cape Xknnedy, Florida.2 

a 95% wind. 

expected maxjmum dynamic pressure (max q) . 
any unstable modes of the vehicle as it passes through t h i s  region. 

Physically, t h i s  gust OCCUTS j u s t  about the je t  stream region which i s  

thus taken in to  account i n  the simulation. 

W 

Using the 

W’ 

This prof i le  has wind magnitudes 

For t h i s  reason it i s  referred t o  as 

I n  addition, a severe gust was added i n  the region of 

This gust w i l l  tend t o  excite 

The wind induced angle of attack, aw, that results from t h i s  

synthetic wind prof i le  i s  shown i n  Figure 5-7. This i s  the external 

disturbance acting on the vehicle and included i n  a l l  t i m e  varying 

simulations. 
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FIG. 5-5  WIND ANGLE OF ATTACK 
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5 -6 The Control Law 

An obvious simplification i n  the design of a control system for  

the Saturn V - Apollo would result if  the control signal f3 could be 

made a f’unction of only the r ig id  body pitch and pitch rate  rather than 

of the measured pitch and pitch rate given by (5.3-26) and (5.3-27). 

Reference t o  the frequency spectrum of Figure 5-3 makes t h i s  appear 

possible since the r ig id  body frequencies and the bending mode frequencies 

are separated by almost a decade of frequency. It would appear at f i rs t  

tha t  a simple low pass f i l t e r  placed i n  the feedback loop with a cutoff 

freqwncy of about 0.3 hertz would separate the r ig id  and bending modes 

nicely. The diff icul ty ,  however, l i es  in  the slosh modes. These extend 

i n  frequency from the r ig id  body modes t o  the f i rs t  bending mode. Any 

low pass f i l t e r  with a cutoff frequency i n  t h i s  range could add enough 

phase s h i f t  at  these slosh mode frequencies t o  drive the slosh modes 

unstable. Although consideration of the e f fec ts  of these slosh is beyond 

the scope of t h i s  work it was decided t o  a l low f o r  t h e i r  presence by 

res t r ic t ing  the cutoff frequency of any low pass f i l t e r  t o  be above one 

hertz.  With t h i s  res t r ic t ion  it was f e l t  tha t  the phase s h i f t  caused 

by the f i l t e r  at the slosh frequencies would be small enough t o  avoid 

slosh s t a b i l i t y  problems. 

With t h i s  res t r ic t ion  on the cutoff frequency of the f i l t e r  the 

result ing control system becomes sensit ive t o  negative perturbation i n  

bending freqwncy, particularly of the first mode. 

i s  clear  upon examination of Figure 5-8 which i s  a Bode plot of the 

simple second order l o w  pass f i l t e r  tha t  w i l l  be used. 

The reason for t h i s  

The f i l t e r  has 

the t ransfer  function 
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FIG. 5-8 LOW PASS FILTER 



The break point frequency of the Bode plot  i s  within the frequency 

band of the first bending mode. Thus when the first mode frequency i s  

perturbed t o  a lower value, the effective gain at  the bendiig m c d e  

frequencies i s  increased. This gain increase can be enough t o  drive one 

of the closed loop poles in to  the r ight  half‘ s-plane with result ing 

ins tab i l i ty .  It w i l l  be shown tha t  Analog Sensi t ivi ty  Design makes 

possible a control system tha t  is  suff ic ient ly  insensitive t o  changes i n  

bending mode frequency tha t  t h i s  i n s t ab i l i t y  does not occur. 

With t h i s  f i l t e r  (5.6-1) i n  the feedback control loop the equations 

of the nominal system w i t h  aw = 0 become 

(5.6-211) 

5i = - 2 f i  lui3i - + m i=1,2,3 ( 5 . 6 - 2 ~ )  
i 

0 

3 

i=l 

(5.6-2d) 

(5.6-2e) 

(5.6-2f) 

+. 
B + 10 B + 50 B = 50 
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5.7 Application of Analog Sensit ivity Design 

Equations (5.6-2) represent the dynamic system t o  which the 

techniques of Analog Sensit ivity Design are t o  be applied. 

the limited analog computation f a c i l i t i e s  available it was necessary t o  

design the control system using a frozen time point model of the vehicle. 

This involves the choice of a time representative of the c r i t i c a l  

portions of the f l i g h t  at which t o  evaluate all the time varying 

coefficients of equations (5.6-2). 

f o r  the result ing t i m e  invariant model. In  order t o  insure the 

applicabili ty of the result ing control system it i s  then tes ted by 

d i g i t a l  simulation using a full t i m e  varying model of the flexible 

booster. 

Because of 

The control system is  then designed 

For the present problem t = 80 seconds after l i f t o f f  w a s  taken 

as the frozen time point. 

the f l i gh t  centering around maximum dynamic pressure without exhibiting 

the extreme values the vehicle paramters take on exactly at  max q. 

This portion of the f l i g h t  is considered the most c r i t i c a l .  

turned out t o  be ju s t i f i ed  when the system designed using t h i s  frozen 

point model proved t o  be able t o  control the time varying model adequately. 

This represents adequately the portion of 

This choice 

Figure 5-9a and Figure 5-9b show the analog computer sizrmlation 

Details of these diagram f o r  the booster and sensi t ivi ty  equations. 

siunilations and the necessary magnitude scaling are given i n  Appendix E .  

It should be noted tha t  the sens i t iv i ty  equations sizrmlation of 

Figure 5-9b i s  ident ical  t o  the vehicle simulation of Figure 5-9a except 

fo r  the two additional inputs added t o  the and 2 s  wi feedback 



U S  

B8 

"0.1 agq 

FIG. 5- 9 a  VEHICLE SIMULATION 



G 

- z2 
G 

z I  

z3 

G 

FI G. 5 - 9 b SENSITIVITY SIMULATION 



terms. 

indicates. 

This is  exactly what the s t ruc tura l  method of Section 4.3 

Thus it is  not necessary t o  develop the simulation equations 

of Figure 5-9a and Figure 5-9b separately. All that must be done i s  

start with the  vehicle simulation diagram of Figure 5-9a and apply the 

structural d e s  of Section 4.3. 

The first s tep was t o  obtain a set of optimal pi tch and pi tch rate 

gains. This w a s  t o  give a yardstick against which the nominal and of f  

nominal performance of the desensitized system could be measured. Since 

the first bending mode appeared t o  be the most c r i t i c a l  it was the mode 

implemented f o r  this  study. These optimal gains were obtained using a 

pi tch i n i t i a l  condition of 5'. 

well damped r ig id  body response w i t h  stable bending not exceeding 1 .0  

meters at  the gimbal plane. 

The c r i te r ion  of optimality was a smooth, 

Tbe optimal gains were determined t o  be 

The simulation resu l t s  for t = 80 seconds w i t h  these optimal gains 

are shown i n  Figure 5-10 for the nominal values of the first bending mode 

frequency, w = w . The i n i t i a l  value of pi tch is seen t o  damp out quite 
0 

rapidly and smoothly t o  zero. The induced angle of a t tack a l so  damps 

out t o  zero smoothly although not quite so rapidly as does pitch. 

Addition of angle of a t tack feedback might speed up the decay of the 

at tack angle but t h i s  was not attempted, primarily because of the lack 

of adequate angle of a t tack  sensors on the Saturn V. 

and gimbal angle are d s o  shown. The bending stays quite small, less 

than 0.9 m. at the gimbal plane. 

Normalized bending 

Gimbal angle shows a rather large 
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t ransient  of about four degrees and the bending frequency feedback 

through the gyros is  evident superimposed on it. 

from the rather  large i n i t i a l  condition of f ive  degrees i n  pitch, but 

even so it remains within the design l i m i t  of - + 5'. 

This t ransient  results 

Figure 5-11 shows the response of the same system when the actual 

first bending mode frequency is ten percent less than the nominal or 

design frequency, w = 0.9 w . The r i g i d  body response is  essent ia l ly  

unchanged. The bending, however, has increased considerably over tha t  

0 

of Figure 5-10 and takes longer t o  decay. The bending i s  coupled 

strongly in to  the gimbal angle and very s m a l l  osci l la t ions at the 

bending frequency are j u s t  v i s ib le  superimposed on the r ig id  body 

response. 

indicate that  s t a b i l i t y  i s  becoming marginal. 

The very l o w  damping of the osci l la t ions i n  the gimbal angle 

Figure 5-12 shows the response of the optimal system when cu = 0.8 cu 
0 

It i s  c lear  that the point of unstabi l i ty  has been reached. The bending 

reaches a large value almost immediately and th i s  is fed back t o  the 

gimbal through the gyro coupling terms of (5.6-2e) and (5.6-2f). This 

i n  turn drives the r i g i d  body unstable. The recordings were terminated 

at  the point where the amplifiers of the analog computer reached saturation. 

N e x t  it w a s  attempted t o  desensitize the vehicle control system by 

trimming the feedback gains about the optimal values while observing the 

sens i t iv i ty  coefficients of Figure 5-9b. Two of the most significant 

sens i t iv i ty  coefficients labelled z4 and z are shown i n  Figure 5-13a 

f o r  the optimal system where 
5 
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(5-7-2) 

Recall t ha t  w is  the natural  frequency of the first bending mode, 

the parameter t o  which the system i s  to be desensitized. (See Appendix D)  

By trimming the feedback gains 5 and 5 it was possible t o  

reduce these sens i t iv i ty  coefficients i n  magnitude by a factor of about 

two  without causing the nominal vehicle response of becoming unacceptable. 

These desensitized feedback gains are 

%NS = - 
, and the result ing 

A s  expected, 

095 
(0.4) 

sensi t ivi ty  coefficients are 

there i s  a definite tradeoff 

(5.7-3) 

shown in  Figure 5-13b. 

between the magnitude of 

the sensi t ivi ty  coefficients and the optimality of the nominal response 

of the control system. By reducing the sensi t ivi ty  coefficients as 

indicated i n  Figure 5-13, the nominal response of the vehicle was de- 

graded somewhat. 

the desensitized system is  shown i n  Figure 5-14. 

evident that the r ig id  body response is  not so w e l l  damped as the optimal 

system. It is, hawever, s t i l l  satisfactory.  The bending is  s l igh t ly  

less than fo r  the optimal system and l i k e  the optimal system is  w e l l  

within design limits. The gimbal angle, while having an envelope which 

indicates tha t  s l igh t ly  more energy was used than i n  the optimal case, 

The nominal response t o  a pitch i n i t i a l  condition for  

It i s  immediately 
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is  of the same general shape as before and the i n i t i a l  t ransient  is 

somewhat smaller i n  magnitude. 

While the nominal response of the vehicle i s  s l igh t ly  worse for 

the desensitized gains (Figure 5-14) than f o r  the optimal gains 

(Figure 5-10) it is still  satisfactory.  

simple matter t o  trade some of the decrease i n  the magnitude of the 

sens i t iv i ty  coefficients f o r  a nominal response which more nearly 

approaches the optimal. 

designer. 

of the sensi t ivi ty  coefficients and the nominal system simultaneously, 

the designer can direct ly  observe the trade o f f  between the two. 

If it were not, it would be a 

This decision is  en t i re ly  i n  the hands of the 

By trimming the values of the gains and observing the response 

Figure 5-15 shows the response of the desensitized system fo r  

The response is  v i r tua l ly  the same as nominal except fo r  w = 0.9 wo. 

the bending which i s  s l igh t ly  higher. 

The desensitized system fo r  w = 0.8 w 

Again the bending has grown s l igh t ly  larger, although s t i l l  quite 

small, and damps out more slowly. A t  t h i s  point the bending oscil lations 

have becoae v is ib le  superimposed on the gimbal angle but the r ig id  body 

response i s  s t i l l  smooth with no trace of the bending apparept. 

should be compared with the optimal system response with w = 0.8 uo 

of Figure 5-12. Clearly Analog Sensit ivity Design has extended the 

permissible range of bending frequency parameter variation. 

is shown in  Figure 5-16. 
0 

This 

Figure 5-17 shows the response of the desensitized system f o r  

w = 0.7 u0, a t h i r t y  percent deviation i n  the value of the parameter. 

The bending is quite pronounced and the osci l la t ions of the gimbal angle 
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at the bending frequency indicates that s t a b i l i t y  is becoming marginal, 

but the system i s  s t i l l  stable.  

The recordings of Figure 5-10 through Figure 5-17 demonstrate the 

usefulness and ease of application of Analog Sensit ivity Design t o  

r e a l i s t i c  systems of high order, i n  t h i s  case seventh order. It i s  clear  

from the recordings tha t  the frozen time point model of the Saturn V 

has indeed been desensitized t o  changes i n  the frequency of the first 

bending mode. 

sensi t ivi ty  coefficients resulted i n  a system that gave satisfactory 

response with paraaeter variations large enough t o  drive the optimal 

system unstable. 

Designing the control system t o  l i m i t  the values of the 

5.8 Time Varying Booster Simulation 

Section 5.7 showed the resu l t s  obtained when Analog Sensit ivity 

Design was  applied t o  a seventh order frozen time point model of the 

Saturn V - Apollo. 

more r e a l i s t i c  time varying model with three bending modes included. 

It remains t o  evaluate t h i s  control system on a 

Appendix E gives the complete description of the time varying 

eleventh order model used t o  represent the Saturn V during the boost 

phase of f l i gh t .  

simulation routine on an I B M  360/50 d i g i t a l  computer. 

the simulator was used as i n p t  t o  an analog plott ing board t o  make 

the curves shown i n  Figure 5-18 through Figure 5-23. 

This model was implemnted by a tjme varying d i g i t a l  

"he output of 

The model was  s tar ted off with zero i n i t i a l  conditions on a l l  states. 

The disturbance vector, u ( t ) ,  w a s  constructed using the design wind 

prof i le  discussed i n  Section 5.5 and shown i n  Figure 5-6. For evaluation 
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of the off nominal response of the vehicle, a l l  three bending mode 

frequencies were perturbed by the sam percentage. 

closely as possible the actual s i tuat ion when the bending parameters 

are inadequately h o r n .  

This represents as 

Figure 5-38a and Figure 5-18b show t-e r ig id  body behavior and 

bending mode response respectively of the Saturn V w i t h  nominal values 

of the bending frequencies, 

gains (5.7-1). 

states remain within satisfactory l imits .  It is  interesting to note 

how closely the r ig id  body states follow the wind induced angle of attack 

of Figure 5-7 f o r  the design wind w i t h  peak values of the response 

occuring a t  max q. 

would make possible an almost unperturbed response by simply adding a 

signal into the control system to cancel the wind. 

exactly what was expected, however, t h i s  additive signal could easi ly  be 

worse than none at  all. For t h i s  reason a l l  the design work was done 

assuming zero wind and the design wind used only f o r  evaluation of the 

control systems. 

wi = w. , fo r  the optimal value of feedback 

The vehicle i s  obviously stable and the response of all 

This indicates that exact knowledge of the wind 

If the wind was  not 

A s  soon as the bending mode frequencies are decreased by ten per- 

cent, a. = 0.9 wi 

Figure 5-19a and Figure 5-19b. 

that the bending becomes unstable first.  

through the gyro coupling terms i n  the booster equations and t b i  r ig id  

body driven unstable. 

an unstable response goes off scale on the graph, plott ing of it i s  

the optimal system goes unstable. This i s  shown i n  
1 0’ 

By comparing these two figures it appears 

This i s  then fed to the gimbal 

For c l a r i t y  i n  t h i s  and succeeding figures, when 



105. 

m 0 

II 
3 

(4 

0 a 
m 
U 

O % !  + -  
I- 

W 
00 
I 
- 

m 
I 

00 0 00 
I 



Ln . 0 Ln 

106. 

0 

0 0 
I 



107. 

a" 
Q) 

I1 
a 
0 



\ --. . 
1. -\ 

0 
d- 

108. 

U 
a 

P 
E 

I 
Lo 

In 

0 
. 0 rc) 

0 
I 



terminated so that the remaining quantit ies may be seen more readily. 

Figure 5-20a and Figure 5-20b show the response of the optimal 

system fo r  w. = 0.85 q 

i n s t ab i l i t y  has come more quickly as could be expected. 

For t h i s  larger  para.mter perturbation 
1 0-  

From these curves it i s  apparent t ha t  while the optimal system 

using the gains (5.7-1) gives satisfactory control fo r  nominal values 

of the bending mode frequencies, j u s t  a small decrease i n  these 

frequencies from the nominal value i s  suff ic ient  t o  cause the system 

t o  go destructively unstable. Desensitization of the vehicle control 

system i s  def ini te ly  needed. 

Next the t i m e  varying simulation of the Saturn V - Apollo w a s  run 

using the desensitized gains of (5.7-3). 

bending frequencies i s  shown i n  Figure 5-2la and Figure 5-2lb. If these 

The response fo r  nominal 

are compared with the nominal response fo r  the optimal system of 

Figure 5-18 it can be seen that the pitch and gimbal angle response are 

somewhat larger  f o r  the desensitized system. The pitch angle, i n  

particular,  i s  almost twice as large at i t s  maximu, although s t i l l  

within acceptable l imits .  This decrease i n  the desirabi l i ty  of the 

nominal response must be expected and, as discussed i n  Section 4.4, i s  

the price tha t  must be paid f o r  decreased system sensi t ivi ty .  

That the system has indeed been desensitized i s  apparent from 

Figure 5-22a and Figure 5-2213 which show the system response f o r  

w. = 0.9 wi . It is  very d i f f i cu l t  t o  distinguish t h i s  from the nominal 

response except fo r  a very s l igh t  increase i n  the magnitude of the bend- 

ing at  max g. 

0 1 
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Figure 5-23a and Figure 5-2353, w i t h  ai = 0.85 mi 

Again the only difference between 

offer  further 
0 

proof of the system insensi t ivi ty .  

t h i s  response and the nominal response fo r  the desensitized gains is 

an increase i n  the bending around the max q region. 

f i f t een  percent perturbation i n  bending frequency of a l l  three modes, 

the response of the vehicle is excellent. This should be compared with 

the violently unstable behavior of the optimal system w i t h  th i s  large 

a parameter perturbation as aham i n  Figure 5-20. 

Even f o r  t h i s  
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C-R 6 

SUMMARY AND RECOMENDATIONS 

6.1 swvnary 

This paper has demonstrated that u n t i l  now there w a s  a def ini te  lack 

of a t r u l y  useful sens i t iv i ty  design technique which enabled the designer 

t o  factor in to  the design of a dynamic system the desired insensi t ivi ty  

t o  cer ta in  parameters. Several methods of sens i t iv i ty  analysis were ex- 

amined but none proved t o  be extendable t o  a t ractable  design procedure. 

Dougherty ' s  technique of combining the sens i t iv i ty  equations w i t h  the 

standard parameter optimization problem w a s  shown t o  require solution of 

a two point boundary value problem. Thus, the method i s  slow t o  converge 

and l i ke ly  t o  suffer  from numerical problems f o r  high order systems. 

Analog Sensi t ivi ty  Design, developed i n  Chapter 4, w a s  shown t o  

s a t i s fy  th i s  lack. 

accomplishing the desensit ization of v i r tua l ly  any system even if  the 

describing equations of motion are unknown. As  one of i t s  d i s t inc t  

advantages, the designer can d i rec t ly  observe the tradeoff between system 

nominal response and insensi t ivi ty  t o  parameter variations.  

Using Analog Sensi t ivi ty  Design it was  possible t o  design a control 

It provides a ve r s i t i l e ,  easy t o  apply method of 

system fo r  a seventh order model of the Saturn V - Apollo tha t  was  

insensit ive t o  changes i n  bending mode frequency. 

with an optimal design which became destructively unstable f o r  identical  

perturbations i n  bending mode frequency. The control system w a s  then 

successfully used t o  control an eleventh order, t i m e  varying model of 

This w a s  compared 
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the booster disturbed by a design wind f o r  various perturbations of the 

bending frequencies of three modes. 

6.2 Recomendations f o r  Future Work 

There are several extensions of t h i s  work tha t  would be of in te res t  

i n  determining the range of appl icabi l i ty  of Analog Sensi t ivi ty  De,sign 

i n  practice.  

F i r s t ,  because of the limited amount and sophistication of the 

analog computation equipment available it was impossible t o  work with 

a t i m e  varying dynamic system. For the booster problem a frozen time 

point model had t o  be used. Theoretically, Analog Sensit ivity Design 

should work ju s t  as w e l l  using a t i m e  varying model and the results would 

cer ta inly be more closely related t o  the response of an actual time 

varying dynamic system. 

Also because of the analog computation equipment available it was 

necessary t o  perform the h i l l  climbing i te ra t ions  manually. 

of the automated technique, described i n  Chapter 4, using logic  elements 

would make  the mechanics of problem solution easier. 

Implementation 

The s t ruc tura l  method of Section 4.3 discuss the use of Analog 

Sensi t ivi ty  &sign on physical devices with unknown mathematical descrip- 

t ions.  

practice. 

of l i nea r  blocks of elements would be needed, but actual  implementation 

should not prove t o  d i f f i cu l t .  

It would be interesting t o  see haw w e l l  t h i s  actually worked i n  

Two ident ical  physical systems consisting of the interconnections 
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Kokotovicu has developed a technique caAled the method of 

"Sensitivity Points" whereby a l l  the  sens i t iv i ty  coefficients of a 

system can be obtained simultaneously from a single sens i t iv i ty  model. 

Using th i s  method and defining the additional sens i t iv i ty  coefficients 

(6.2-1) 

where I i s  the performance index of Section 4.2 and the Ki are the 

adjustable gains, it should be possible t o  develop a gradient technique 

fo r  the solution of the Analog Sensi t ivi ty  Design problem. 

speed the convergence t o  a solution and would require very l i t t l e  

additional analog computation equipment. 

This would 
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KWEXDIX A 

S E N S I T M T X  EQUATION INITIAL CONDITIONS 

When a parameter variation of the dyn&c system (A-1) causes the 

i n i t i a l  conditions x(0) t o  change, 

the analysis of Section 3.3 is no longer valid.  To examine the e f fec t  

of such parameter variation, consider the following case 

x = f(x, t, 40 +Aq) 
x (0 )  = c + 4 c ( q )  (A-2 1 

where  the change i n  i n i t i a l  conditions is due t o  the perturbation in  the 

parameter q. 

Using the alternative def ini t ion of the sens i t iv i ty  coefficients 

developed i n  Section 3.3, the i n i t i a l  condition 

equation of (A-2) i s  

of the sensi t ivi ty  

(A-3) 
c+A C-c 

A S  
= lim 
c19-0  

Thus i n  general., when the i n i t i a l  condition of a dynamic system can 

be changed by a paramter variation, the i n i t i a l  condition of the 

sens i t iv i ty  equation is  
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The development of the sens i t iv i ty  coefficients of Chapter 3 depends 

on the f ac t  tha t  the d i f fe ren t ia l  equat im of the dynamic system is  

ana,lytic i n  the parameter q. 

hold when a variation of the parameter can change the order of the system. 

This appendix shows tha t  t h i s  does not 

Consider the l inear  system of (B-1) . 

The s t a b i l i t y  of this  system depends on the sign of the real p a r t s  

of the roots of the characterist ic equation (B-2) 

n 
C a i s  i = O  

i = O  

Equation (B-1) is stable i f  the roots of (B-2) all have negative 

real par ts  and unstable otherwise. 

Now assume a particular variation q of the parameter q in- 

creases the order of the system by one. The characterist ic equation 

then becomes 

n 

w h e r e  ai' i = 1, 2, . . .,n are the new values of .the ai caused by 

the parameter variation. 



Dividing (B-3) through by q 0 gives 

i=O 

n+l .T ~ h u s  as b g  - 0, s - r . Therefore f o r  suff ic ient ly  

small  (5 g lower order terms can be neglected leaving 

1 a 

A s  
i s = - -  

which is another way of saying that the (n+l)st eigenvalue h n+l 

i s  given by 

Thus the solution of (B-1) does not depend analytically on the 

s e  parameter A g. 
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APPENDIX C 

EIGENVALW SENSITIVITY 

C.l General 

I n  Section 4.2 the eigenvalue sensi t ivi ty  of a linear dynamic system 

was shown t o  be 

( c  s-1) 

where 

and the ui are the corresponding eigenvectors of A . 
(hi, vi) are eigenvalue-eigenvector pairs  of the system matrix A 

T 

This appendix evaluates the eigenvalue sens i t iv i ty  of the two 

desensitized systems of Section 4.6 

The dynamic equations of the system are given by 

( c  .1-2) 

where 3 = (% 
parameter with nominal value 

The first set of gains, denoted by 

5)  are the feedback gains and q is the varying 

90 = 1. 

Kd was obtained using Dougherty's 

d i g i t a l  desensitization scheme 

K = ( 
2.76 d (c.1-3) 
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The second set of gains, Ka, was  obtained using Analog Sensi t ivi ty  

Design. 

(C -1-4) 

C.2 D i g i t a l  Gains 

Using the d i g i t a l  gains (C.1-3)  gives a character is t ic  equation of 

h + 4.16 3 0 7 ~ 1  = 
-1 h 

which yields eigenvalues of 

h = - 1.34 2 h = - 2.82 1 

(c.2-1) 

(c .2-2) 

The corresponding eigenvectors are then given by 

v1 = 0 
-2.82 

which solve t o  yield 

( C  2 -4)  
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The eigenvectors of the transposed s y s t e m  matrix are given by 

) u2 = 0 

-1 34 

Which, when solved give 

u2 = (2182) ( c  .2-6) 

Using the values f r o m  (C.2-2), (C.2-4) and (c.2-6) i n  the formula 

f o r  eigenvalue sens i t iv i ty  ( c .1-1) gives 

a hl - (so)  = 1-09 
a s  

- (so)  = - 0.9 a s  

c.3 

An analysis similar t o  t h a t  of Section C.2 can be made f o r  the analog 

gains (C .1-4). The resul t ing eigenvalues are 

The eigenvectors of A are 

v 1 = (  - 5 3  v2 = (-0193) 
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and the eigenvectors of are 

u2 = k)  (c.3-3) 

Using these values i n  the eigenvalue sens i t iv i ty  formula gives 

- ($) = - 0.23 6 %  (c 03-4) 
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APPENDIX D 

TIME IERIVATIVE OF ROTATING UNIT VECTORS 

Figure D-1 shows two coordinate systems. Assume the xyz system 

is  rotating w i t h  angular velocity with respect t o  the fixed WZ 

coordinate system. Thus uni t  vectors i n  the x, y, z directions are A, - j, 

- k respectively. 

Consider one of the uni t  vectors, c a l l  it - r, and assume the axis 

of rotation i s  that of Figure D-2. 

velocity 'v = )I) at point P i s  given by 

The magnitude of the tangential 

- -  a h o  a d @  v =  lim & --=am d t  At+o 

But the radius i s  given by 

a = r s in  a 0-2 ) 

Thus combining equations (D-1) and (D-2) gives an expression f o r  

the magnitude of the velocity 

v = u ) r  s i n a  03-3 1 

Using (D-3) together with the f ac t  that - v i s  perpendicular t o  

the plane formed by - u) and - r gives 

- V ' g X r  (D-4) 

But since v is  the t h e  derivative of - r th is  can be writ ten as - 
- r = g x r  0 - 5  1 

Then using (D-5) with the uni t  vectors i, j ,  k i n  place of the 

general un i t  vector r gives 
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IX  
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I 
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i x  
I 

FIG. D - l  ROTATING SYSTEM 

Y 

FIG. D - 2  ROTATING VECTOR 



a i  
dt 
- - = g x A  

dk 
- = a x k  dt - - 
- 



ANALOG S m T I O N  OF BOOSTER 

E .1 Booster Equations 

The d i f fe ren t ia l  equations of the seventh order model of the 

Saturn V - Apollo used i n  the Analog Sensit ivity Design of Section 5.7 are 

R1 B ") # + #I - (-& + 1) a - - a=-(F- v v mv 
N' e 

e T-D 

For ease i n  notation these equations will be rewritten as 

# = 

a = a  # + # + a  a + b  8 

e* 

a + b2 B 
., 

31 33 3 

(E -1-la) 

(E . l - lb )  

(Eel-1,) 

(E e 1 - M )  

(E . l- le)  

(E. 1-2a) 

(E -1-2b) 

(E - 1 - 2 ~ )  

(E. 1-2d) 

(E .1-2e) 

These equations completely describe the seventh order booster 

model. 
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E.2 Scaling the Model 

Before the booster model (E.1-1) can be put on the analog computer 

This involves choosing maximum values fo r  it must be magnitude scaled. 

a l l  the variables. The assumed maxima are 

# max = 0.5 radians 

# max = 0.5 radians 
e 

f3 max = 0.1 radians 

6 max = 0.5 radians/sec (E .2-1) 

a! max = 0.5 radians 

3 m a x  = 2.0 meters 

i m a x  = 20.0 meters/sec 

a! max = 0.5 radians/sec 

9 max = 20.0 meters/sec 
H 

These figures are quite conservative fo r  a satisfactory control 

system hence saturation problems are avoided even f o r  rather large 

deviations i n  response. 

Since an EA1 TR 20 analog computer has a maximum dynamic range of 

1 -  + 10 volts, these maxima of (E.2-1)  should correspond t o  LO volts .  

Therefore define the scaled o r  computer variables as 

p lS  = 20 # a" = 20 a ps = 100 g 
0 

JyIs = 5 9  

f l s  = 0 . 5 3  
8 

f s  = 20 # .. *e 
#? = 20 # 

(E -2 -2)  

e 
It i s  most important at th i s  point t o  note that since and 

are scaled differently,  
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or  leaving out the middle steps 

Inserting the values of the variables i n  terms of the scaled 

variables from (E.2-2) in to  the or iginal  model equations (E.l-2) gives 

the scaled equations 
00 

fis = a23 as + 0.2 b2 BS 
0 e 
as = a31 6' + 6' + a33 as + 0.2 b Bs 

3 

(E .2-5a) 

These are the scaled equations that are implemented on the analog 

computer. The simulation diagram is shown i n  Figure5-9a.. 



APPENDIX F 

TIME VARYING BOOSmR MODEZ 

F.l Nathematical Model 

The t i m e  varying model of the Saturn V - Apollo used i n  t h i s  study 

consists of eleven linearized, first order state equations w i t h  time 

varying coefficients.  The l inearized state variables axe 

x1 
X 2 

x3 

x4 

"5 

y7 

3 
5 0  

?L l  

"6 

"8 

r ig id  body pi tch angle .# 
r i g i d  body pi tch rate # 

e 

r ig id  body angle of a t tack a 

normalized first bending mode displacement ')11 

normalized first bending mode rate 7l 
normalized second bending mode displacement 3 
norrmlized second bending mode  ra te  32 
normalized third bending mode displacement 

normalized th i rd  bending mode rate 

engine gimbal angle .f3 

engine gimbal rate p 

e 

0 

3 3  

0 

In  terms of these state variables the vehicle equations analogous 

t o  those of Chapter 5 can be writ ten as 
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e 
?u= "ll,lO "lo + all,ll "Is + bll @c 

where the time varying coefficients are given by 

a76 = - 
a77 - - 

- 

- 
7710 - 

a98 = - 
"99 - - 

a 

- 

N ' lcp/I 
- R'lcg/I 

"1 (F - v 
T-D 

- R'/mv 

- R'Y (X )/m2 2 6  
2 

@3 

= - R'Y (X )/m 
"9,10 3 ! 3  3 

2 
O3 - - -  
f a ll, 10 

= - 2 1 f  Uf 
U, 11 
a 

bU = 03 2 
f 

e v 
U ( t )  = 7 aw + aw 

(F.1-1) 

(F  -1-2 ) 



A& discussed i n  Chapter 5, only the outputs of the pi tch and pitch 

rate gyros are avaj2abl.e f o r  control information. Thus these measurable 

variables, yl and y2 respectively, are given by 

yi = % + r i4  x4 +r i6  x6 + "8 

where the t i m e  varying coefficients are given by 

( FJ-4) 

The feedback control l a w  i s  of the form 

where 5 and I$ are the pi tch and pi tch rate gyro feedback gains, 

re spe e t  ively . 
Iche gimbal angle 6 i s  related t o  the control signal BC by the 

r o l l  off f i l ter  character is t ic  

( F .1-6 ) 

where  uf is 

rat io.  

the natural  frequency of the filter and 1 i s  the damping 
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This eleventh order model was implemented on an I B M  360/50 d ig i t a l  

computer using BPS F~~RTFWI. me output of the program was used t o  

drive a CALCflMP plo t te r  t o  give the curves shown i n  Chapter 5 .  

F.2 N u m e r i c a l .  Data 

"he following pages give the numerical data used i n  t h e  booster 

The data are given at 4 second intervals and linear inter-  model. 

polation was used between these points. Nomenclature follows that 

used i n  Section F . l  and Chapter 5 with the exception that the measure- 

ment matrix P is here denoted by the symbol C.  
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